Innovative Nanomaterial-Based Analytical Techniques for Early Detection of Diseases: A Comprehensive Review

  • Sukumar Reddy Bhuma Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh-517502

Abstract

Early and accurate disease diagnosis is crucial for improving patient outcomes and reducing healthcare costs. Nanomaterials have emerged as transformative tools in enhancing the sensitivity and specificity of analytical methods for early disease detection. This review explores various nanomaterials, including metallic nanoparticles, carbon-based nanomaterials, quantum dots, and polymeric nanoparticles, and their application in biosensors, immunoassays, molecular imaging, and lab-on-a-chip devices. These advanced materials significantly improve the detection of disease biomarkers at low concentrations, enabling earlier and more accurate diagnosis than traditional methods. Despite the challenges associated with toxicity, reproducibility, and regulatory approval, nanomaterial-based diagnostic methods offer unparalleled potential in revolutionising early disease detection. The review also discusses future directions, highlighting the integration of nanomaterials with technologies like artificial intelligence and the progress toward commercializing nanomaterial-based diagnostic tools. As the field advances, nanomaterials are poised to play a pivotal role in the future of personalised medicine and point-of-care diagnostics.

Keywords: Nanomaterials, Early Disease Diagnosis, Biosensors, Immunoassays, Molecular Imaging, Lab-on-a-Chip, Biomarkers

Downloads

Download data is not yet available.

References

Kumar A, Sharma K, Dhanjal DS, Nepovimova E, Kuča K, Singh R. Recent advances in nanotechnology for the treatment of Alzheimer's disease: A comprehensive review. J Adv Res. 2020;19:15-29.
2. Wang Y, Yan X, Wang S, Song J, Li B. Nanomaterial-based biosensors for environmental pollutant detection and cleanup. Environ Sci Nano. 2019;6(3):754-77.
3. Zhang Y, Yu J, Bomba HN, Zhu Y, Gu Z. Mechanochemically responsive materials for on-demand drug delivery. AccChem Res. 2019;52(2):361-72.
4. Li Y, Li X, Dong X, He X, Zhang C, Li H, et al. Recent advances in nanomaterial-based biosensors for detection of exosomes. Anal Bioanal Chem. 2020;412(26):7673-83.
5. Niroja Vadagam, Sharath Babu Haridasyam, MuvvalaVenkatanarayana, Narasimha S. Lakka, Sanjeeva R. Chinnakadoori, Separation and quantitative estimation of stereo-selective enantiomers of montelukast in pharmaceutical drug substance and tablets dosage forms by using stability-indicating normal phase-HPLC method, Chirality, 2023, 35(12), 952-965
6. Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. ChemSoc Rev. 2015;44(1):362-81.
7. Mohan Pasham, Sharath Babu Haridasyam, Niroja Vadagam, NVVD Praveen Boppy, Sanjeeva R Chinnakadoori, Narasimha S Lakka, Separation and quantification of organic-related impurities of betaadrenergic receptor blocking agent propranolol in pharmaceutical solid dosage forms: Impurity profiling using stability-indicating HPLC method, 2024, 7(1), 2300159.
8. Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: Challenges and future needs. J Environ Sci Health C Environ CarcinogEcotoxicol Rev. 2009;27(1):1-35.
9. Zhu X, Zhang J, Zhang Y, Ye H, Liu J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis, sensing, and bioimaging. J Mater Chem C. 2021;9(28):9070-110.
10. Jagtap RV, Jyoti MA, Kumar AR, Shaikh SA, Debnath M, Kumar S, et al. Recent advances in carbon quantum dots as sensing materials for detection of environmental pollutants. Mater Today Proc. 2020;26:2442-47.
11. Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y. Nanomaterial-based biosensors for detection of foodborne pathogens and toxins. Trends Analyt Chem. 2016;85:139-50.
12. Khan M, Hasan M, Hossain MI, Haque E, Uddin MJ, Islam MT. Recent advances in nanomaterial-based biosensors for cancer biomarkers detection. Biomaterials. 2021;266:120-23.
13. Papinaboina Venkata Rao, Chinnakadoori Sanjeeva Reddy, Ravi Kumar Marram, DantuDurga Rao, Simultaneous Determination Of Omeprazole And Domperidone In Capsules And In Vitro Dissolution Studies By Using Stability Indicating UPLC, Journal of liquid chromatography & related technologies, 2012, 35 (16), 2322-2332.
14. Narasimha S Lakka, Chandrasekar Kuppan, Niroja Vadagam, Poornima Ravinathan, KalyaniChepuri, Sanjeeva R Chinnakadoori, Molecular docking, in-vitro anticancer evaluation and ADME profiling of 7-Oxo Midostaurin, Journal of Molecular Structure, 2023, 1293, 136159.
15. Niroja Vadagam, Sharath Babu Haridasyam, MuvvalaVenkatanarayana, Narasimha S Lakka, Sanjeeva R Chinnakadoori, Separation and simultaneous estimation of enantiomers and Diastereomers of muscarinic receptor antagonist Solifenacin using stability-indicating Normal-phase HPLC technique with chiral stationary phase amylose tris-(3,5-dimethylphenylcarbamate), Chirality, 2024, 36(2), e23632.
16. N. V. V. D. Praveen Boppy, Sharath Babu Haridasyam, Niroja Vadagam, MuvvalaVenkatanarayana, Sanjeeva R. Chinnakadoori, Narasimha S. Lakka, Separation and quantification of organicrelated impurities of anti-histamine drug hydroxyzine in pharmaceutical dosage forms using stability-indicating high-performance liquid chromatography, liquid chromatography-mass spectrometry, and high-resolution mass spectrometry techniques, Separation Science Plus, 2024, 2300157.
17. Tiwari JN, Tiwari RN, Kim KS. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci. 2012;57(4):724-803.
18. Sharma S, Hussain S, Bora MB, Deka S, Bhattacharjee S, Pathak K, et al. Recent advances in microfluidic biosensors for point-of-care diagnostics. Anal Methods. 2020;12(10):1030-44.
19. Niroja Vadagam, Sharath Babu Haridasyam, MuvvalaVenkatanarayana, Narasimha S Lakka, Sanjeeva R Chinnakadoori, Separation and quantitation of valacyclovir enantiomers using stability-indicating chiral liquid chromatography method with a chiral stationary phase of amylose tris-(3,5-dimethyl phenyl carbamate), Separation Science Plus, 2023, 6(12), 2300145.
20. Manda P, Popescu C, Juluri A, Janga K, Kakulamarri PR, Narishetty S, et al. Micronized Zaleplon Delivery via Orodispersible Film and Orodispersible Tablets. AAPS PharmSciTech. 2018 Jan 19;19(3):1358–66.
21. Lee J, Kim J, Kim S, Min DH. Biosensors based on graphene oxide and its biomedical application. Adv Drug Deliv Rev. 2016;105:275-87.
22. Chen A, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. ChemSoc Rev. 2013;42(12):5425-38.
23. Kakulamarri PR, Latha Alikatte K. Transdermal Iontophoresis of Non-Polar Drugs: A Mini Review. Journal of Pharmaceutics & Drug Delivery Research. 2016;5(3).
24. Sajid M, Kawde AN, Daud M. Designs, formats and applications of lateral flow assay: A literature review. J Saudi Chem Soc. 2015;19(6):689-705.
25. Dhawan A, Sharma V, Parmar D. Nanomaterials: A challenge for toxicologists. Nanotoxicology. 2009;3(1):1-9.
26. Umer A, Naveed M, Ramzan N, Rafique MS, Imran M. A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Mater Today Proc. 2015;2(6):4278-82.
27. Lakshmi Narasimha Rao K, Praneeth Rao K. Development and Validation of a Stability-Indicating LC Method for Determination of Bexarotene in Softgel Dosage Formulation. Chromatographia. 2017 Jun 23;80(8):1211–24.
28. Choi M, Kang C, Lee S, Kim SH, Hwang DW, Lee D, et al. Surface modified carbon nanotubes for intracellular delivery of therapeutic molecules. J Mater Chem. 2021;9(25):14345-53.
29. Huo J, Wen X, Wang N, Zhang Y, Shi Z. Nanomaterial-based biosensors: Promising tools for rapid detection of COVID-19. J Nanobiotechnology. 2021;19(1):1-21.
30. Rao Kakullamarri P, Tiyyagura P, Suresh Babu K. A Stable Formulation of a Non-Steroidal Anti-inflammatory Drug, Ibuprofen and an Antihistamine drug, Famotidine for a Combination Therapy. Journal of International Research in Medical and Pharmaceutical Sciences. 2023 Nov 1;18(2):38–50.
31. Yang J, Li X, Xu J, Wang Y. Recent advances in nanomaterial-based biosensors for detection of pathogens. Bioengineered. 2021;12(1):7448-63.
32. Al-Ogaidi I, Gou H, Al-Kazaz AK, de la Chapelle ML, Al-Khaled K, McLandsborough L, et al. A nanomaterial-based optical biosensor for rapid and sensitive detection of foodborne pathogens. BiosensBioelectron. 2017;96:373-79.
33. Wang S, Xu L, Zhang X, Wang L, Xiao Y. Recent advancements in nanomaterial-based biosensors for the detection of marine toxins. TrAC Trends Anal Chem. 2021;144:116-38.
34. Kakullamarri PR, Rao KLN (2017) Enhanced Bioavailability and Anticancer Activity of Vitamin Analogs. J BioequivAvailab 9: 439-441
35. Tang D, Liu B, Niessner R, Knopp D. Nanoparticle-based immunosensors in environmental analysis. TrAC Trends Anal Chem. 2011;30(8):1138-49.
36. Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK. Nanobiosensors: Concepts and variations. ISRN Nanomaterials. 2013;2013:1-9.
37. Ren Y, Zhou Z, Wu H, Guo X, Song Y, Zhang Y. Recent advances in nanomaterial-based biosensors for antibiotics detection. BiosensBioelectron. 2019;142:1-14.
38. Li X, Li P, Zhang Z, Chi Q. Nanomaterial-based biosensors for environmental monitoring. Curr Opin Environ Sci Health. 2020;16:62-70.
Published
29-08-2024
Statistics
112 Views | 59 Downloads
Citatons
How to Cite
1.
Bhuma SR. Innovative Nanomaterial-Based Analytical Techniques for Early Detection of Diseases: A Comprehensive Review. World Journal of Current Med and Pharm Research [Internet]. 2024Aug.29 [cited 2025Feb.9];6(2):76-1. Available from: https://wjcmpr.com/index.php/journal/article/view/339
Section
Review Articles