Antimicrobial activity of curcuma longa and mimosa pudica: a comprehensive review
Abstract
The active ingredient in turmeric, Curcuma longa, and the traditional medicinal plant, Mimosa pudica, have both been the subject of intensive research due to their wide range of therapeutic applications. The antibacterial, anti-inflammatory, and wound-healing qualities of Mimosa pudica have long been employed, whereas curcumin is well known for its anti-inflammatory, antioxidant, and anticancer benefits. The pharmacological advantages of these two naturally occurring substances are summarized in this article, which also discusses their possible synergistic effects, modes of action, and therapeutic uses. Our goal in examining the complimentary qualities of Mimosa pudica and curcumin is to present a through analysis that bolsters their application in integrative medicine and offers ideas for further research. Curcumin is known for its powerful anti-inflammatory, antioxidant, and anticancer properties. Its therapeutic success is related to its capacity to affect numerous cellular pathways, such as inhibiting NF-KB and activating AREs. These pathways play a vital role in reducing inflammation and oxidative stress, which contribute to chronic diseases like cancer, cardiovascular disease, and neurodegeneration. Curcumin's antibacterial characteristics make it a promising medicinal agent with broad-spectrum applications. Mimosa pudica, often known as the "sensitive plant" for its quick responsiveness to physical stimuli, has a long history in traditional medicine, especially in Ayurvedic and folk treatments. It is used for wound healing,anti-inflammatory, antibacterial, and anti-ulcer properties. The pharmacological actions of Mimosa pudica are primarily due to its rich composition of bioactive compounds, including alkaloids,flavonoids, tannins, and phenolic acids.These compounds collectively contribute to the plant's ability to modulate immune responses, promote tissue regeneration, and inhibit microbial growth.Curcumin and Mimosa pudica have complimentary mechanisms that can lead to synergistic effects. Curcumin modulates intracellular signaling pathways and transcription factors, while Mimosa pudica's bioactive ingredients also interact with extracellular targets and microbial cell walls, indicating a multimodal approach to illness management.
Downloads
References
2. Tan L.F., Yap V.L., Rajagopal M., Wiart C., Selvaraja M., Leong M.Y., Tan P.L., Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review, Plants, 2022, 11:3009 [Crossref], [Google Scholar]
3. Jaggi Lal. Turmeric, Curcumin and Our Life: A Review. Bulletin of Environment,
Pharmacology and Life Sciences. 2012;(17):11-17
4. Teow SY, Liew K, Ali SA, et al. Antibacterial action of curcumin against Staphylococcus aureus: a brief review. Journal of tropical medicine. 2016
5. Low Z.X., Teo M.Y.M., Nordin F.J., Dewi F.R.P., Palanirajan V.K., In L.L.A., Biophysical evaluation of water-soluble curcumin encapsulated in β-cyclodextrins on colorectal cancer cells, International Journal of Molecular Sciences, 2022, 23:12866 [Crossref], [Google Scholar], [Publisher]
6. Gaurav A., Agrawal N., Al-Nema M., Gautam V., Computational Approaches in the Discovery and Development of Therapeutic and Prophylactic Agents for Viral Diseases, Current topics in medicinal chemistry, 2022, 22:2190 [Crossref], [Google Scholar], [Publisher]
7. Aggarwal, B. B., & Harikumar, K. B. (2009). Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. International Journal of Biochemistry & Cell Biology, 41(1), 40-59.
8. Ghani. A. medicinal plants of Bangladesh with chemical constituents and uses. dhaka. asiatic society of Bangladesh. 1998;second ed.
9. Srivastava V, Sharma A Alam I. A Review on Ethnomedical and traditional uses of Mimosa pudica. Int. Res. J. Phar, 2012; 3 (2): 42-44
10. RekhaRajendran, S. Hemalatha, K. Akasakalai, C. H. Madhukrishna, BavanSohil, Vittal and R. MeenakshiSundaram. Hepatoprotective activity of mimosa pudica leaves against carbontetrachoride induced toxicity. journals of natural products. 2009;vol 2 116-122.
11. Cock, I. E. (2012). Problems of reproducibility and efficacy of bioassays using crude extracts, with reference to Mimosa pudica. Pharmacognosy Communications, 2(2), 34-45.
12. International Journal of Creative Research Thoughts(IJCRT)www.ijcrt.orgAnti-inflammatorypropertiesofTurmeric(Curcuma longa)in. Anticancer Activity.
13. Sangita Jogdand and JagrutiBhattacharjee. Evaluation of analgesic activity of turmeric (Curcuma longaLinn.) in Wister rats. International Journal of Basic and Clinical
Pharmacology. 2017;6 (3):568-571
14. Negi PS, Jayaprakasha GK, Jagan Mohan Rao L and Sakariah KK. Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. J Agric Food Chem. 1999;47:4297-4300.
15. Kuttan R, Bhanumati P, Nirmala K andGeorge MC. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett. 1985;29:197-202.
16. Khare Cp (207) Indian Medical Plants,springer science+Business Media,LLC,New York,USA
17. Miniperspective. Journal of Medicinal Chemistry 60(5): 1620_1637.
18. Albasri O.W.A., Kumar P.V., Rajagopal M.S., Development of Computational In Silico Model for Nano Lipid Carrier Formulation of Curcumin, Molecules, 2023, 28:1833 [Crossref], [Google Scholar], [Publisher]
19. Tan L.F., Yap V.L., Rajagopal M., Wiart C., Selvaraja M., Leong M.Y., Tan P.L., Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review, Plants, 2022, 11:3009 [Crossref], [Google Scholar]
20. Low Z.X., Teo M.Y.M., Nordin F.J., Dewi F.R.P., Palanirajan V.K., In L.L.A., Biophysical evaluation of water-soluble curcumin encapsulated in β-cyclodextrins on colorectal cancer cells, International Journal of Molecular Sciences, 2022, 23:12866 [Crossref], [Google Scholar], [Publisher]
21. Gaurav A., Agrawal N., Al-Nema M., Gautam V., Computational Approaches in the Discovery and Development of Therapeutic and Prophylactic Agents for Viral Diseases, Current topics in medicinal chemistry, 2022, 22:2190 [Crossref], [Google Scholar], [Publisher]
22. Kuttan R., Sudheeran P., Josph C., Turmeric and curcumin as topical agents in cancer therapy, Tumori Journal, 1987, 73:29 [Crossref], [Google Scholar], [Publisher]
23. De R., Kundu P., Swarnakar S., Ramamurthy T., Chowdhury A., Nair G.B., Mukhopadhyay A.K., Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice, Antimicrobial agents and chemotherapy, 2009, 53:1592 [Crossref], [Google Scholar], [Publisher]
24. Winton A. Microscopy of vegetable foods. 1916; 2nd edition. Culbreth.D. A manual of Materia medica and pharmacology. 1917; 6th edition.
25. Roshan Prasad Yadav and Gaur Tarun.Versatility of turmeric: A review the
golden spice of life. Journal of Pharmacognosy and Phytochemistry. 2017;6(1):41-46.
26. Roughley PJ, Whiting DA 1973. Experiments in the biosynthesis of curcumin. JChem Soc 20:2379-2388
27. Satyavati GV, Raina MR, Sharma M 1976.Medicinal plants of India. Indian Councilof Medical Research, New Delhi
28. Pfeiffer E, Hhle S, Solyom AS andMetzler M. Studies on the stability of turmeric constituents. J Food Enginee.2003;56:257-259.
29. Simanjuntak, HA. Antibacterial Activity of Ethanolic Extract of Kitolod (Hippobroma longiflora) Leaf Against Staphylococcus aureus and Salmonella typhi. Asian Journal of Pharmaceutical Research and Development. 2020; 8(1):52-54.
30. Karou D, Savadogo A, CaniniA,Yameogo S, Montesano C, Simpore J, Colizzi V, Traore AS. Antibacterial activity of alkaloids from Sida Acuta 2005; 4(12):1452-7.
31. Niamsa N, Sittiwet C. Antimicrobial activity of Curcuma longa aqueous extract. Journal of Pharmacology and Toxicology2009;4(4):173-7.https://doi.org/10.3923/jpt.2009.173.177 Crossref.
32. Reddy N, Han S, Zhao Y, Yang Y. Antimicrobial activity of cotton fabrics treated with curcumin.J Appl Polym Sci. 2012; 127: 2698-702. Crossref
33. Kumari A, Singh DK, Dash D, Singh R. Intranasal curcumin protects against LPS-induced airway remodeling by modulating toll-like receptor-4 (TLR-4) and matrix metalloproteinase-9 (MMP-9) expression by affecting MAP kinases in a mouse model. Inflammo pharmacology 2018; 27: 731-48. Crossref.
34. Varaprasad K, Vimala K, Ravindra S, Reddy NN, Reddy GVS, Raju KM.Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications. J Mater Sci Mater Med.2011; 22: 1863-72. Crossref.
35. Begam SR, Karthikeyan S, Arumugam M, John SA. Antibacterial activity of Curcuma pseudomontana with special reference to multi drug resistant pathogens. Int J Pharmacol Scree Methods 2014;4:127-30.
36. S.-.H. Mun, D.-.K. Joung, Y.-.S. Kim, O.-.H. Kang, S.-.B. Kim, Y.-.S. Seo, Y.-.C. Kim, D.-.S.Lee, D.-.W. Shin, K.-.T. KweonSynergistic antibacterial effect of curcuminagainstmethicillin-resistant Staphylococcus aureus
37. P. Tyagi, M. Singh, H. Kumari, A. Kumari, K. MukhopadhyayBactericidal activity of curcumin I is associated with damaging of bacterial membranePLoS One, 10 (2015), Article e0121313 View at publisher CrossRefView in ScopusGoogle Scholar.
38. M.-.K. Kim, G.-.J. Choi, H.-.S. LeeFungicidal property of Curcuma longa L.rhizome-derived curcumin against phytopathogenic fungi in a greenhouseJ. Agric. Food Chem., 51 (2003), pp. 1578-1581 View in ScopusGoogle Scholar.
39. Gul P., Bakht J., Antimicrobial activity of turmeric extract and its potential use in food industry, Journal of food science and technology, 2015, 52:2272 [Crossref], [Google Scholar], [Publisher]
40. Anand P., Sundaram C., Jhurani S., Kunnumakkara A.B., Aggarwal B.B., Curcumin and cancer: an “old-age” disease with an “age-old” solution, Cancer letters, 2008, 267:133 [Crossref], [Google Scholar], [Publisher]
41. Gautam S.C., Gao X., Dulchavsky S., Immunomodulation by curcumin, The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease, 2007, 321 [Crossref], [Google Scholar], [Publisher]
42. Hatcher H., Planalp R., Cho J., Torti F., Torti S., Curcumin: from ancient medicine to current clinical trials, Cellular and molecular life sciences, 2008, 65:1631 [Crossref], [Google Scholar], [Publisher]
43. egi P., Jayaprakasha G., Jagan Mohan Rao L., Sakariah K., Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture, Journal of agricultural and food chemistry, 1999, 47:4297 [Crossref], [Google Scholar], [Publisher]
44. Praditya D., Kirchhoff L., Brüning J., Rachmawati H., Steinmann J., Steinmann E., Anti-infective properties of the golden spice curcumin, Frontiers in microbiology, 2019, 10:912 [Crossref], [Google Scholar], [Publisher]
45. Ahmad H, Sehgal S, Mishra A, Gupta R. Mimosapudica L. (Laajvanti): An overview. Pharmacognosy Rev. 2012; 6(12): 115.
46. Srivastava V, Sharma A Alam I. A Review on Ethnomedical and traditional uses of Mimosa pudica. Int. Res. J. Phar, 2012; 3 (2): 42-44.
47. Johnson K, Narasimhan G, Krishnan C. mimosa pudica linn- a shyness princess: A review of its plant movement, active constituents, uses and pharmacological activity. IJPSR, 2014; Vol. 5(12): 5104-18.
48. Muhammad, G., Hussain, M. A., Jantan, I., & Bukhari, S. N. A. (2015). Mimosa pudica L., a high-value medicinal plant as a source of bioactives for pharmaceuticals. Journal of Medicinal Plants Research, 9(50), 1444-1452. https://doi.org/10.1111/1541-4337.12184 50.Nilesh K, Kaur P, Das K, Chakroborty S. Mimosa Pudica L. A Sensitive Plant, Int J. Phar Pharma. Sci., 2009; 1(2): 1-8.
49. Singh M, Bharghava S, Bhaduaria RS, Sharma CS.Wound Healing Potential of Alcoholic Extract of Mimosa pudica L. Leaves. Pharmacology online, 2010; 2: 32-38.
50. Azmi L, Singh MK, Akhtar AK. Pharmacological and biological overview on Mimosa pudica Linn. Int. J. Pharm. Life Sci., 2011; 2(11): 1226-34
51. Uko I, Amadioha AC, Okolie H, Okonkwo NJ. Problems and prospects of Giant Sensitive Plant (Mimosa invisa Mart.) in Agro-Ecosystems in Nigeria: A Review. Int. J. Agri. Biosci, 2020; 9(2): 95-102.
52. Vismayaviswan TK, Dharani J, Sripathi R, Ravi S Composition Of The Essential Oil From Mimosa Pudica Linn. Asian J Pharm Clin Res. 2019; 12 (3): 170-172.
53. Ramadhana YB, Sabrinab AN, Kwartiningsih E. Bio absorption of Chromium from Textile Wastewater Using Mimosa pudica Tannin Gel. Equilibrium,2021; 5(1): 51-58.
54. Barneby R. Sensitivae censitae Mimosa, Memoirs of the New York botanical garden, 1991; 65:491-762.
55. Abirami SG, Mani KS, Devi MN, Devi PN. The Antimicrobial Activity of Mimosa Pudica L. International Journal of Ayurveda and Pharma Research. 2014; 2(1): 105-8
56. Gunalan G, Saraswathy A, Krishnamurthy V. Antimicrobial activity of medicinal plant Bauhinia variegata Linn. International Journal of Pharmacy and Biological Sciences. 2011; 1(4): 400-8.
57. Cowan MM. Plant products as antimicrobial agents. Clinical microbiology reviews. 1999; 12(4): 564-82.
58. Mohan G, Anand SP, Doss A. Efficacy of aqueous and methanol extracts of Caesalpinia sappan L. and Mimosa pudica L. for their potential antimicrobial activity. South Asian Journal of Biological Sciences. 2011; 1(2): 48-57
59. Kaur P, Kumar N, Shivan TN. Phytochemical screening and antimicrobial activity of the plant extracts of Mimosa pudicaL. against selected microbes. Journal of medicinal plants research. 2011; 5(22): 5356-9.
60. Sunil M, Nagakrishna L, Maity SN, Pyadala N, Mallepaddi PC, Sailesh SK, Polavarapu R. Evaluation of antibacterial activity of ethanolic extracts of Mimosa pudica leaves.
Mintage Journal of Pharmaceutical and Medical Sciences. 2016; 5(3): 25-7.
61. Akter A, Neela FA, Khan MS, Islam MS, Alam MF. Screening of ethanol, petroleum ether and chloroform extracts of medicinal plants, Lawsonia inermis L. and Mimosa pudica L.
for antibacterial activity. Indian journal of pharmaceutical sciences. 2010; 72(3): 388-92
62. Krishna TM, Thota SP, Jadhav M, Kamal KM, Venuganti A, Mrunalini D, Vadiari S, Mittapelli G. Studies on in vitro antioxidant and antibacterial activities of Sphaeranthus
indicus (Linn). International Journal of pharmaceuticalresearch and biomedical analysis. 2013; 2(1):1-9.
63. Cushnie TT, Lamb AJ. Antimicrobial activity of flavonoids. International journal of antimicrobial agents. 2005; 26(5): 343-56
64. Ibrahim D, Muhammad I, Kanoma A, Shehu K, Aliero A, Aliyu R. Antifungal screening ofMimosa pudica plant Extracts against phytopathogenic fungi. Open Science Journal of Bioscience and Bioengineering. 2014; 1(1):1-12.
65. Sharma MC, Sharma S. Phytochemical and pharmacological screening of combined Mimosa pudica Linn and Tridax procumbens for in vitro antimicrobial activity. International Journal of Microbiological Research. 2010; 1(3):171-4.
66. Sukhdev Swami Handa, Suman Preet Singh Khanuja, Gennaro Longo, Dev Dutt Rakesh. 2008. Extraction technologies for medicinal and aromatic plants, International centre for science and high technology.
67. Pandey A, Tripathi S. Concept of standardization, extraction, and pre-phytochemical screening strategies for herbal drug. J Pharmacogn Phytochem 2014;2:115-9.
68. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 2011;8:1-10.
69. Doughari JH. Phytochemicals: Extraction methods, basic structures, and mode of action as potential chemotherapeutic agents, phytochemicals––a global perspective of their role in nutrition and health. In: A Global Perspective of Their Role in Nutrition and Health.Venketeshwer R. Editor. InTech; 2012. Available from: www.intechopen.com. [Last accessed 2019 Jun. 10].
70. Xu, R., Ye, Y. and Zhao, W. (2011). Introduction to natural products chemistry. USA: CRC press. https://doi.org/10.1201/b11017.
71. Plaza, M. and Turner, C. (2015). Pressurized hot water extraction of bioactives. TrAC Trends in Analytical Chemistry, 71, 39-54. https://doi.org/10.1016/ j.trac.2015.02.022.
72. Handa SS, Khanuja SP, Longo G, Rakesh DD. Extraction technologies for medicinal and aromatic plants. Int Cent Sci High Technol 2008; Ch.1.
73. Majekodunmi SO. Review of extraction of medicinal plants for pharmaceutical research. MRJMMS 2015;3:521‑7.
74. .Ingle KP, Deshmukh AG, Padole DA, Dudhare MS, Moharil MP, Khelurkar VC. Phytochemicals: Extraction methods, identification, and detection of bioactive compounds from plant extracts. J Pharmacogn Phytochem 2017;6:32-6.
75. N.N. Azwanida, A review on the extraction methods use in medicinal plants, principle, strength and limitation, Med. Aromat. Plants 4 (2015) 196,doi:10.4172/2167-0412.1000196.
76. S.V. Chanda, M.J. Kaneria, Optimization of conditions for the extraction of antioxidants from leaves of Syzygium cumini L, Using Differ. Solvents 5 (3)(2012) 332–338,doi:10.1007/s12161-011-9242-0.
77. N. Mahmudati, P. Wahyono, D. Djunaedi, Antioxidant activity and total phenolic content of three varieties of Ginger (Zingiber officinale) in decoctionand infusion extraction method, J. Phys. Conf. Ser. 1567 (2020) (-)022028–, doi:10.1088/1742-6596/1567/2/022028.
78. Ignatova S, Hewitson P, Mathews B, Sutherland I. Evaluation of dual flow counter-current chromatography and intermittent counter-current extraction. Journal of Chromatography A. 2011 Sep 9;1218(36):6102-6.
79. Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts.Plants 2017;6:42.
80. Bhan M. Ionic liquids as green solvents in herbal extraction. Int J Adv Res Dev 2017;2:10-2.
81. J. Quintero Quiroz, A.M.N. Duran, M.S. Garcia, G.L.C. Gomez, J.J.R. Camargo,Ultrasound-assisted extraction of bioactive compounds from annatto seeds,evaluation of their antimicrobial and antioxidant activity, and identification of main compounds by LC/ESI-MS analysis, Int. J. Food Sci. 2019 (2019)VolumeArticle ID 3721828, 9,doi:10.1155/2019/3721828.
82. Gopalasatheeskumar, K. (2018). Significant role of Soxhlet extraction process in phytochemical research. *Mintage Journal of Pharmaceutical & Medical Sciences*, 7(Suppl 1). ISSN: 2320-3315.
83. Raja, P.M.V., & Barron, A.R. (2021, March 21). Basic principles of supercritical fluid chromatography and supercrtical fluid extraction. Retrieved May11, 2021, from https://chem.libretexts.org/@go/page/55864.
84. Y.N. Belo, S. Al-Hamimi, L. Chimuka, C. Turner, Ultrahigh-pressure supercritical fluidextraction and chromatography of Moringa oleifera and Moringa peregrina seed lipids, Anal. Bioanal. Chem. 411 (16) (2019) 3685–3693, doi:10.1007/s00216-019-01850-x.
85. Lewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its' effects on human health. Foods, 6(10), Article 92. https://doi.org/10.3390/foods6100092
86. Mills S, Bone K. Principles and Practice of Phytotherapy. Toronto, ON: Churchill Livingstone; 2000
87. Preeti Rathaur, Waseem Raja, P.W Ramteke and Suchit A. John. Turmeric: The golden spice of life. International journal of pharmaceutical sciences and research. 2012 3(7):1987-1994. Available from: https://ijpsr.com/bft-article/turmeric-the-golden-spice-of-life/
88. Verma, R. K., Kumari, P., Maurya, R. K., Kumar, V., Verma, R. B., & Singh, R. K. (2018). Medicinal properties of turmeric (Curcuma longa L.): A review. *International Journal of Chemical Studies*, 6(4), 1354-1357.
89. Hare, C. P., & Srivastava, M. M. (1976). Pharmacognostic studies of Mimosa pudica Linn. Indian Journal of Pharmacy, 38(6), 166-170. 91.Singh, D., & Singh, P. (2012). Medicinal properties of Mimosa pudica Linn: A Review. International Journal of Pharmaceutical Sciences and Research, 3(4), 161-165.
90. Meenatchisundaram S, Priyagrace S, Vijayaraghavan R, Velmurugan A, Parameswari G, Michael A. Antitoxin activity of Mimosa pudica root extracts against Naja naja and Bangarus caerulus venoms. Bangladesh J Pharmacol. 2009; 4: 105-109.
91. Ranjani S, Faridha Begum I, Santhoshini J, Senthil Kumar N, Ruckmani K, Hemalatha S. Mimosa pudica floral nanoparticles: a potent antibiotic resistance breaker. Inorganic and Nano-Metal Chemistry, 2020; 51(12): 1751-58.
92. Ahamefula A. Ahuchaogu1, Godwin I. Ogbuehi1, P.O. Ukaogo1 and I feanyi. E. Otuokere, Gas Chromatography Mass Spectrometry and Fourier transform Infrared Spectroscopy analysis of methanolic extract of Mimosa pudica L. leaves, J.Dru. Pharm. Sci., 2020; 4(1): 1-9.
93. Panaretto B, Tunks D, Munro S. Depilatory effects of certain chemicals during the first hair growth cycle in sucking mice, Laboratory Animals 1978; 12:185-192.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.