A review of leishmania genome, hosts, virulence factors, pathogenesis and treatment

  • Abdul–Jaleel Aziz KarimAlqaraghli Directorate of Education DhiQar, Ministry of Education, Iraq

Abstract

The study aims in this review to study the Leishmania genus parasite that causes Leishmaniasis, in its clinical forms Cutaneous Leishmaniasis (CL), MucocutanousLeishmaniasis (ML) and Visceral Leishmaniasis (VL). When studying the parasite's genetic composition of the genome of the nucleus and the genome of the kinetoplast, which constitutes 10-20% of the total DNA, it was found that despite the difference in pathogenicity between the types of the parasite L., the genetic material is similar and maintains the genetic content. CL is a self-healing disease, but prompt treatment is important to avoid unattractive scarring and parasite spread. Of all the drugs of choice, Pentostam and Glucantime are the first line of treatment for all types of leishmaniasis, but there are serious attempts to discover new therapies.

Keywords: Leishmaniasis, Genomic of Leishmania, Pathogenesis, Treatment

Downloads

Download data is not yet available.

Author Biography

Abdul–Jaleel Aziz KarimAlqaraghli, Directorate of Education DhiQar, Ministry of Education, Iraq

Directorate of Education DhiQar, Ministry of Education, Iraq

References

1. Assafa, D., et al., Medical parasitology. 2006: p. 12-122.
2. Simpson, L., The mitochondrial genome of kinetoplastid protozoa: genomic organization, transcription, replication, and evolution. Annual Reviews in Microbiology, 1987. 41(1): p. 363-380.
3. Khazaei, S., et al., Epidemiological aspects of cutaneous leishmaniasis in Iran. 2015. 10(3).
4. Al-Hamash, S.M.J.M.M.J., Study of visceral leishmaniasis (kala-azar) in children of Iraq. 2012. 11(2): p. 15-19.
5. Blum, J., et al., Local or systemic treatment for New World cutaneous leishmaniasis? Re-evaluating the evidence for the risk of mucosal leishmaniasis. 2012. 4(3): p. 153-163.
6. Postigo, J.A.R.J.I.j.o.a.a., Leishmaniasis in the world health organization eastern mediterranean region. 2010. 36: p. S62-S65.
7. Karimi, A. and A.J.I. Nabipour, Molecular prevalence of Leishmania major and Leishmania tropica in humans from the endemic region of Fars, Iran. 2015. 4: p. 3090-100.
8. Bari, A.U. and S.B.J.J.o.P.A.o.D. Rahman, Cutaneous leishmaniasis: an overview of parasitology and host-parasite-vector inter relationship. 2008. 18(1): p. 42-48.
9. Oliveira, J.G.S., et al., Polymerase chain reaction (PCR) is highly sensitive for diagnosis of mucosal leishmaniasis. 2005. 94(1): p. 55-59.
10. Teixeira, D.E., et al., The cell biology of Leishmania: how to teach using animations. 2013. 9(10): p. e1003594.
11. Real, F., et al., The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. 2013. 20(6): p. 567-581.
12. Rogers, M.B., et al., Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. 2011. 21(12): p. 2129-2142.
13. Ivens, A.C., et al., The genome of the kinetoplastid parasite, Leishmaniamajor. 2005. 309(5733): p. 436-442.
14. Bard, E., Molecular biology of Leishmania. Biochemistry and Cell Biology 1989. 67(9): p. 516-524.
15. Dedet, J.-P., et al., The parasite-isoenzymatic characterization of 100 isolates of the Leishmania infantum complex. 1999. 3(17): p. 261-268.
16. Beverley, S.M.J.N.a.r., Characterization of the ‘unusual’mobility of large circular DNAs in pulsed field-gradient electroplioresis. 1988. 16(3): p. 925-939.
17. Iovannisci, D.M., et al., Genetic analysis of adenine metabolism in Leishmania donovani promastigotes. Evidence for diploidy at the adenine phosphoribosyltransferase locus. 1984. 259(23): p. 14617-14623.
18. Uliana, S.R., J.C. Ruiz, and A.K. Cruz, Leishmania genomics: where do we stand?, in Bioinformatics in Tropical Disease Research: A Practical and Case-Study Approach [Internet]. 2007, National Center for Biotechnology Information (US).
19. Mendoza-León, A., J.J. Shaw, and F. Tapia, A guide for the cutaneous leishmaniasis connoisseur. Molecular immune mechanismsin the pathogenesis of cutaneous leishmaniasis., 1996: p. 1-23.
20. Sturm, N.R. and L. Simpson, Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA. Cell, 1990. 61(5): p. 879-884.
21. Weigle, K.A., et al., PCR-based diagnosis of acute and chronic cutaneous leishmaniasis caused by Leishmania (Viannia). Journal of clinical microbiology, 2002. 40(2): p. 601-606.
22. Yang, B.-B., et al., Analysis of kinetoplast cytochrome b gene of 16 Leishmania isolates from different foci of China: different species of Leishmania in China and their phylogenetic inference. Parasites and vectors, 2013. 6(1): p. 1-12.
23. Asato, Y., et al., Phylogenic analysis of the genus Leishmania by cytochrome b gene sequencing. Experimental parasitology, 2009. 121(4): p. 352-361.
24. Emami, M.M. and M. Yazdi, Entomological survey of phlebotomine sand flies (Diptera: Psychodidae) in a focus of visceral leishmaniasis in central Iran. Journal of vector borne diseases, 2008. 45(1): p. 38.
25. Lane, R., sandflies (Phlebotominae). Medical insects arachnids, 1993: p. 78-119.
26. Lewis, D., Phlebotomid sandflies. Bulletin of the World Health Organization, 1971. 44(4): p. 535.
27. Maroli, M., et al., Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Medical veterinary entomology, 2013. 27(2): p. 123-147.
28. Martínez-de la Puente, J., J. Figuerola, and R. Soriguer, Fur or feather? Feeding preferences of species of Culicoides biting midges in Europe. Trends in parasitology, 2015. 31(1): p. 16-22.
29. Von Stebut, E., Leishmaniasis. J Dtsch Dermatol Ges, 2015. 13(3): p. 191-200; quiz 201.
30. Valenciano, M., et al., Challenges for communicable disease surveillance and control in southern Iraq, April-June 2003.Jama, 2003. 290(5): p. 654-658.
31. Adler, S. and O. Theodor, Investigations on Mediterranean kala azar IX—Feeding experiment with phlebotomus perniciosus and other species on animals infected with leishmania infantum. Proceedings of the Royal Society of London. Series B-Biological Sciences, 1935. 116(801): p. 516-542.
32. Organization, W.H., Framework for action on cutaneous leishmaniasis in the Eastern Mediterranean Region 2014-2018. 2014.
33. Svobodova, Z., et al., Bioaccumulation of mercury invarious fish species from Orlík and Kamýk water reservoirs in the Czech Republic. Ecotoxicology Environmental Safety, 1999. 43(3): p. 231-240.
34. El-Adhami, B., Isolation of Leishmania from a black rat in the Baghdad area, Iraq. The American Journal of Tropical Medicine Hygiene, 1976. 25(5): p. 759-761.
35. Morsy, T.A., et al., Studies on zoonotic cutaneous leishmaniasis among a group of temporary workers in North Sinai Governorate, Egypt. Journal of the Egyptian Society of Parasitology, 1995. 25(1): p. 99-106.
36. Yaghoobi-Ershadi, M., et al., Colonization and biology of Phlebotomus papatasi, the main vector of cutaneous leishmaniasis due to Leshmania major. Iranian Journal of Public Health, 2007. 36(3): p. 21-26.
37. Guarga, J., et al., Canine leishmaniasis transmission: higher infectivity amongst naturally infected dogs to sand flies is associated with lower proportions of T helper cells. Research in Veterinary Science, 2000. 69(3): p. 249-253.
38. Halbig, P., et al., Further evidence that deltamethrin‐impregnated collars protect domestic dogs from sandfly bites. Medical Veterinary Entomology, 2000. 14(2): p. 223-226.
39. Semiao-Santos, S., et al., Evora district as a new focus for canine leishmaniasis in Portugal. Parasitology Research, 1995. 81: p. 235-239.
40. Sivagnaname, N. and D. Amalraj, Breeding habitats of vector sandflies and their control in India. The Journal of Communicable Diseases, 1997. 29(2): p. 153-159.
41. Özbel, Y., et al., Molecular detection and identification of Leishmania spp. in naturally infected Phlebotomus tobbi and Sergentomyia dentata in a focus of human and canine leishmaniasis in western Turkey. Acta tropica, 2016. 155: p. 89-94.
42. Khyatti, M., et al., Infectious diseases in North Africa and north African immigrants to Europe. The European Journal of Public Health, 2014. 24(suppl_1): p. 47-56.
43. Santos, T., et al., Comparison of PCR with stained slides of bone marrow and lymph nodes aspirates with suspect diagnosis for leishmaniasis. Acta tropica, 2014. 140: p. 137-140.
44. França-Costa, J., et al., Exposure of phosphatidylserine on Leishmania amazonensis isolates is associated with diffuse cutaneous leishmaniasis and parasite infectivity. PloS one, 2012. 7(5): p. e36595.
45. Signorini, M., et al., Ecological nichemodel of Phlebotomus perniciosus, the main vector of canine leishmaniasis in north-eastern Italy. Geospatial health, 2014. 9(1): p. 193-201.
46. Casadevall, A., L.-a.J.J.o.w. Pirofski, and health, Virulence factors and their mechanisms of action: the viewfrom a damage–response framework. 2009. 7(S1): p. S2-S18.
47. Späth, G.F., et al., Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proceedings of the National Academy of Sciences, 2000. 97(16): p. 9258-9263.
48. Zhang, K., et al., The LPG1 gene family of Leishmania major. Molecular biochemical parasitology, 2004. 136(1): p. 11-23.
49. Rogers, M.E., The role of Leishmania proteophosphoglycans in sand fly transmission and infection of the mammalian host. Frontiers in microbiology, 2012. 3: p. 223.
50. Silva-Almeida, M., et al., Proteinases as virulence factors in Leishmania spp. infection in mammals. Parasites vectors, 2012. 5: p. 1-10.
51. Doyle, P.S., et al., Drugs targeting parasite lysosomes. Current pharmaceutical design, 2008. 14(9): p. 889-900.
52. Soares, R.P., et al., Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sand fly vector Lutzomyia longipalpis. Molecular biochemical parasitology, 2002. 121(2): p. 213-224.
53. Hallé, M., et al., The Leishmania surface protease GP63 cleaves multiple intracellular proteins and actively participates in p38 mitogen-activated protein kinase inactivation. Journal of Biological Chemistry, 2009. 284(11): p. 6893-6908.
54. von Stebut, E. and S. Tenzer, Cutaneous leishmaniasis: Distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major. International Journal of Medical Microbiology, 2018. 308(1): p. 206-214.
55. Al‐Jawabreh, A., et al., The recent emergence of Leishmania tropica in Jericho (A'riha) and its environs, a classical focus of L. major. Tropical Medicine International Health, 2004. 9(7): p. 812-816.
56. Banuls, A.-L., M. Hide, and F. Prugnolle, Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Advances in parasitology, 2007. 64: p. 1-458.
57. Ritter, U., F. Frischknecht, and G. van Zandbergen, Are neutrophils important host cells for Leishmania parasites? Trends in parasitology, 2009. 25(11): p. 505-510.
58. Enserink, M., Has leishmaniasis become endemic in the US? 2000, American Association for the Advancement of Science. p. 1881-1883.
59. Ribeiro-Gomes, F.L. and D. Sacks, The influence of early neutrophil-Leishmania interactions on the host immune response to infection. Frontiers in cellular infection microbiology, 2012. 2: p. 59.
60. Hassan, H.F., S.J. Shakour, and S.S. Hamad, Partial purification of proteinase from Leishmania donovani amastigotes and promastigotes. Biochem. Cell. Arch., 2020. 20(2): p. 6661-6666.
61. McCall, L.-I., W.-W. Zhang, and G. Matlashewski, Determinants for the development of visceral leishmaniasis disease. PLoS pathogens, 2013. 9(1): p. e1003053.
62. Al-maeahi, A.M. and I.A. Marhoon, Parasitological survey of visceral leishmaniasis (kala-Azar) in Al-Diwaniyah Province, Iraq. Journal of Pharmaceutical Sciences Research in Environment and Life Sciences, 2018. 10(12): p. 3146.
63. Behrman, R.E. and V.C. Vaughan III, Nelson textbook of pediatrics. 1983: WB Saunders company.
64. Hayden, E.C., Projects set to tackle neglected diseases. Nature, 2014. 505(7482): p. 142.
65. Parish, L.C., Andrews’ diseases of the skin: clinical dermatology. JAMA, 2011. 306(2): p. 213-213.
66. Hepburn, N.C., Cutaneous leishmaniasis: an overview. Journal of postgraduate medicine, 2003. 49(1): p. 50.
67. Mehlhorn, H. and H. Mehlhorn, Human parasites. 2016: Springer.
68. Al-Obaidi, H., et al., The effect oflaser and laser photosensitizer combination on Leishmania tropica promastigotes in vitro. Iraqi Journal of Veterinary Sciences, 2006. 20(2): p. 117-122.
69. Rahim, G. and I. Tatar, Oriental sore in Iraq. Bulletin of endemic diseases, 1966. 8(1/4): p. 29-54.
70. Monteiro, M.C., et al., Effect of Lutzomyia longipalpis salivary gland extracts on leukocyte migration induced by Leishmania major. The American journal of tropical medicine hygiene, 2007. 76(1): p. 88-94.
71. Castelli, G., et al., Evaluation of two modified culture media for Leishmania infantum cultivation versus different culture media. The Journal of parasitology, 2014. 100(2): p. 228-230.
72. Tan, H., S. Wong, and B. Ong, Cutaneous leishmaniasis: a report of two cases seen at a tertiary dermatological centre in Singapore. Singapore medical journal, 2000. 41(4): p. 179-181.
73. Burns, T., et al., Rook's textbook of dermatology. 2008: John Wiley & Sons.
74. Scott, P. and F.O. Novais, Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nature Reviews Immunology, 2016. 16(9): p. 581-592.
75. Oliveira, P.R., et al., Il2ra genetic variants reduce il-2–dependent responses and aggravate human cutaneous leishmaniasis. The Journal of Immunology, 2015. 194(6): p. 2664-2672.
76. Liu, D. and J.E. Uzonna, The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Frontiers in cellular infection microbiology, 2012. 2: p. 83.
77. Prina, E., et al., Dendritic cells as host cellsfor the promastigote and amastigote stages of Leishmania amazonensis: the role of opsonins in parasite uptake and dendritic cell maturation. Journal of cell science, 2004. 117(2): p. 315-325.
78. Wilhelm, P., et al., Rapidly fatal leishmaniasis in resistant C57BL/6 mice lacking TNF. The Journal of Immunology, 2001. 166(6): p. 4012-4019.
79. Decoster, A. and B. Lecolier, Bicentric evaluation of Access Toxo immunoglobulin M (IgM) and IgG assays and IMx toxo IgM and IgG assays and comparison with Platelia Toxo IgM and IgG assays. Journal of clinical microbiology, 1996. 34(7): p. 1606.
80. Glennie, N.D., et al., Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. Journal of Experimental Medicine, 2015. 212(9): p. 1405-1414.
81. Bogdan, C., Natural killer cells in experimental and human leishmaniasis. Frontiers in cellular infection microbiology, 2012. 2: p. 69.
82. Mutiso, J.M., et al., Immunology of leishmaniasis. Sci Parasitol, 2013. 14(2): p. 51-61.
83. Scott, P. and F.O. Novais, Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nature Reviews Immunology, 2016. 16(9): p. 581-592.
84. Moafi, M., et al., Comparison of pro‐inflammatory cytokines of non‐healing and healing cutaneous leishmaniasis. Scandinavian Journal of Immunology, 2017. 85(4): p. 291-299.
85. Ryan, J.R., et al., Enzyme-linked immunosorbent assay based on soluble promastigote antigen detects immunoglobulin M (IgM) and IgG antibodies in sera from cases of visceral and cutaneous leishmaniasis. Journal of clinical microbiology, 2002. 40(3): p. 1037-1043.
86. Diro, E., et al., High parasitological failure rate of visceral leishmaniasis to sodium stibogluconate among HIV co-infected adults in Ethiopia. PLoS Neglected Tropical Diseases, 2014. 8(5): p. e2875.
87. Calvopina, M., et al., Case Report: Coinfection of Leishmania guyanensis and Human Immunodeficiency Virus–Acquired Immune Deficiency Syndrome: Report of a Case of Disseminated Cutaneous Leishmaniasis in Ecuador. The American journal of tropical medicine hygiene, 2017. 96(5): p. 1151.
88. Jabini, R., et al., Effects of combined therapy with silymarin and glucantime on leishmaniasis induced by Leishmania major in BALB/c mice. Drug Research, 2015. 65(03): p. 119-124.
89. Van Thiel, P., et al., Miltefosine treatment of Leishmania major infection: an observational study involving Dutch military personnel returning from northern Afghanistan. Clinical Infectious Diseases, 2010. 50(1): p. 80-83.
90. Lage, P.S., et al., Strychnos pseudoquina and its purified compounds present an effective in vitro antileishmanial activity. Evidence-Based Complementary Alternative Medicine, 2013. 2013.
91. Machado, M., et al., Monoterpenic aldehydes as potential anti-Leishmania agents: activity of Cymbopogon citratus and citral on L. infantum, L. tropica and L. major. Experimental parasitology, 2012. 130(3): p. 223-231.
92. Wiwanitkit, V., Interest in paromomycin for the treatment of visceral leishmaniasis (kala-azar). Therapeutics clinical risk management, 2012: p. 323-328.
93. Seifert, K., et al., Effects of Miltefosine and Other Alkylphosphocholines on Human Intestinal ParasiteEntamoeba histolytica. Antimicrobial agents and chemotherapy, 2001. 45(5): p. 1505-1510.
94. Ahmed, H., K.C. Carter, and R.A. Williams, Structure and antiparasitic activity relationship of alkylphosphocholine analogues against Leishmania donovani. Microorganisms, 2020. 8(8): p. 1117.
Published
16-03-2024
Statistics
61 Views | 32 Downloads
Citatons
How to Cite
KarimAlqaraghli, A. A. “A Review of Leishmania Genome, Hosts, Virulence Factors, Pathogenesis and Treatment”. World Journal of Current Medical and Pharmaceutical Research, Vol. 6, no. 1, Mar. 2024, pp. 17-25, doi:10.37022/wjcmpr.v6i1.315.
Section
Review Articles