Antibacterial protein fraction derived from Streptomyces fradiae against septicemia infection in Labeorohita: Breakthrough in marine drug discovery
Abstract
The aquaculture sector continues to be an essential source of food, revenue, nutrition, and a means of subsistence for numerous people globally. Intensive aquaculture in a confined region induces environmental stress in farmed fish, which indirectly increases their vulnerability to many diseases. Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio harveyi are the causative bacterial pathogens for septicemia, the most prevalent and commonly seen illness. Disease outbreaks result in a rise in mortality or a decrease in the quality of the meat, consequently inflicting substantial economic losses to carp production. In contrast, the continual use of antibiotics for infection management has contributed to the proliferation of drug-resistant bacteria in aquatic environments. In this context, marine actinobacteria are emerging as possible sources of new secondary metabolites to combat the problem. Actinobacteria are undoubtedly the most prolific producers of secondary metabolites, and they comprise several commercially and biotechnologically significant species. In this investigation, marine actinobacteria were isolated and evaluated for their antibacterial effectiveness against septicemia pathogens. Effective strains were identified as Nocardiopsis sp., Streptomyces sp., and Pseudonocardia sp. Candidate strains culture filtrates were treated with acetone to precipitate complete proteins. The antibacterial and anti-quorum sensing properties of the crude protein against A. hydrophila MTCC 1739 and P. aeruginosa MTCC 9425 were also examined using the agar well diffusion method. In addition, in vivo investigations of the low molecular weight fraction on Labeorohita demonstrated the fraction's efficacy in reducing septicemia infection. After the 8th day of bathing, fish were found to have recovered.
Downloads
References
2. X. XuY. ShenJ.FuL.Lu. J. Li(2015). Next-generation sequencing identified micro RNAs that associate with motile aeromonad septicemia in grass carp. Fish Shellfish Immunol. 45, 94-103. https://doi.org/10.1016/j.fsi.2015.02.008.
3. P. Holmes, L.M. Niccolls, D.P. Sartory (1996). The ecology of mesophilic Aeromonas in aquatic environment. In: Austin, B., Altwegg, M., Gosling, P., Joseph, S.W. (Eds.), the Genus Aeromonas. John Wiley & Sons, New York, NY, pp. 39-76. https://scholar.google.com/scholar_lookup?publication_year=1996&pages.
4. J.M Janda, S.L. Abbott (2010). The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection. Clinical microbiology reviews, Jan. p. 35–73. https://doi.org/10.1128/CMR.00039-09.
5. I. Karunasagar, G.MRosalind, K. Gopal Rao (1989). Aeromonas hydrophilasepticaemia of Indian major carps in some commercial fish farms of West. Godavari District, Andhra Pradesh. Current Science 58, 1044-1045. https://eurekamag.com/research/037/215/037215566.php.
6. D. F. Kirke, S. Swift, J. Lynch, P. Williams(2004). The Aeromonas hydrophilaLuxR homologue AhyR regulates the N-acyl homoserine lactone synthase, AhyI positively and negatively in a growth phase-dependent manner. FEMS Microbiol Lett 241(1):109-17. https://doi:10.1016/j.femsle.2004.10.011.
7. V. C. Kalia(2013). Quorum sensing inhibitors: an overview. Biotechnol Adv 31(2):224-245. https://doi.org/10.1016/j.biotechadv.2012.10.004.
8. R. Burkholder, M. Pfister, H. Leitz (1996). Production of a pyrrole antibiotic by a marine bacterium. Appl. Microbiol. 14: 649-653. https://doi: 10.1128/am.14.4.649-653.1966.
9. R. E. Procopio, I. R. Silva, M. K. Martins, J. L. Azevedo, J. M. Araujo (2012). Antibiotics produced by Streptomyces. Braz j infect dis;16(5):466–471. https://doi.org/10.1016/j.bjid.2012.08.014.
10. J. Hamedi, F. Mohammadipanah, A. Ventosa (2013). Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes. Extremophiles 17:1-13.https://doi.org/10.1007/s00792-012-0493-5.
11. N. Sumeth, C. Warangkana, L. Monthon, B. Phuwadol(2011). Actinomycetes Producing Anti-Methicillin Resistant Staphylococcus aureus from Soil Samples in Nakhon Si Thammarat Walailak. Journal of Science and Technology; 8(2): 131‐138.http://dx.doi.org/10.2004/wjst.v8i2.15.
12. A. EI-Nakkeb, A. Lechevalier (1963). Selective isolation of aerobic actinomycetes. Appl. Microbiol. Biotechnol. 11:75-77. https://doi.org/10.1128/am.11.2.75-77.1963.
13. T. Shomura, Omoto. S. M, Ohba. K and Ogino. H (1980). “SF-1961, a new antibiotic related to bleomycin,” Journal of Antibiotics, vol. 33, no. 11, pp. 1243–1248.
14. S. J. Bruce. I. Tavazzi, V. Parisod, S. Rezzi, S. Kochhar, P. A. Guy(2009). Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Analytical chemistry, 81(9), 3285-3296. https://doi.org/10.1021/ac8024569.
15. M. M. Bradford (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.
16. A.L. Barry, F. Garcia, L.D. Thrupp (1970). An improved single disc method for testing the antibiotic susceptibility for rapidly growing pathogens. Am. J. Clin. Pathol. 53, 149-158. https://doi.org/10.1093/ajcp/53.2.149.
17. M. Kawato, R.Shinobu (1959). A simple technique for the microscopical observation, memoirs of the Osaka University Liberal Arts and Education, B. Natural Sciences 8 :114-119.
18. S. T. Williams, M. E. Sharpe(1989). Bergey’s manual of determinative bacteriology.vol.4 Williams and Wilkins co., Baltimore. ISBN 10- 0683090615, ISBN 13- 9780683090611.
19. Q. Li, X. Chen, Yi. Jiang, C. Jiang (2016). Morphological Identification of Actinobacteria. Chapter 3. http://dx.doi.org/10.5772/61461.
20. E. B. Shirling, D. Gottlieb (1966). Methods for identification of streptomyces species. Int.J.Sys. Bacteriol., 16:312-340. https://doi.org/10.1099/00207713-16-3-313.
21. H. D. Tresner, E. J. Backus (1963). System of Color Wheels for Streptomycete Taxonomy. Appl. Microbiol. 11:335-338. https://doi.org/10.1128/am.11.4.335-338.1963.
22. W. B. Whitman (2012). Bergey’s manual of Systematic Bacteriology Second Edition Volume Five, The Actinobacteria, Part A. e-ISBN 978-0-387-68233-4. https://doi.org/10.1007/978-0-387-68233-4
23. G. Rajivgandhi, R. Vijayan, M. Maruthupandy, B. Vaseeharan, N. Manoharan(2018). Anti-biofilm effect of Nocardiopsis sp. GRG1 (KT235640) compound against biofilm forming gram negative bacteria on UTIs. Microb. Pathog. 118,190-8. https://doi.org/10.1016/j.micpath.2018.03.011.
24. E. Zielinska, B. Barbara, K. Monika (2018). Identification of antioxidant and anti-inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodessigillatus, Tenebrio molitor, Schistocerca gragaria). International Journal of Food Science and Technology. https://doi.org/10.1111/ijfs.13848.
25. I. Gromova, E. Celis (2006). Protein detection in gel by silver straining a procedure compatible with mass-spectrometry. Cell biology: A laboratory Handbook, 4, 421-429. https://doi.org/10.1016/B978-012164730-8/50212-4.
26. D.J. Chabot, R.L.Thune (1991). Proteases of the Aeromonas hydrophila complex: identification, characterization and relation to virulence in channel catfish, Ictaluruspunctatus (Rafinnesque). J. Fish Dis. 14, 171-183. https://doi.org/10.1111/j.1365-2761.1991.tb00587.x.
27. M. Yadav, S. Indira, A. Ansary (1992). Cytotoxin elaboration by Aeromonas hydrophila isolated from fish with epizootic ulcerative syndrome. J. Fish Dis. 159, 183– 189. https://doi.org/10.1111/j.1365-2761.1992.tb00652.x.
28. N Neely, D Pfeifer, M. Caparon(2002). Streptococcus-zebra fish model of bacterial pathogenesis. Infection and immunity, p. 3904-3914. https://doi.org/10.1128/IAI.70.7.3904-3914.2002.
29. R. Harikrishnan, M. Nisha Rani, C. Balasundaram (2003). Hematological and biochemical parameters in common carp, Cyprinus carpio, following herbal treatment for Aeromonas hydrophila infection. Aquaculture 221, 41-50. http://dx.doi.org/10.1016/S0044-8486(03)00023-1.
30. I.M. Szabo, M. Marton (1976). Evaluation of Criteria Used in the ISP Cooperative Description of Type Strains of Streptomyces and Streptoverticillium Species. International Journal of systematic and Evolutionary Microbiology. Vol. 26, No. 2. https://doi.org/10.1099/00207713-26-2-105.
31. K. Noer, T. Triyanto (2019). Bioactivities of Halo metabolites from Marine Actinobacteria. Bio-molecules 9 (6), 225. https://doi.org/10.3390/biom9060225.
32. M. Abdelfattah, Mohammed I. Y. Elmallah, U. Hawas, Lamia Taha Abou El-Kassema, M. A. G. Eid (2016). Isolation and characterization of marine derived actinomycetes with cytotoxic activity from the red sea coast. Asian Pac JTrop Biomed: 6(8): 651-657. https://doi.org/10.1016/j.apjtb.2016.06.004.
33. J. Selvin, S. Shanmughapriya, R. Gandhimathi, G. Seghal Kiran, T. Rajeetha Ravji, K .Natarajaseenivasan, T. A. Hema(2009). Optimization and production of novel antimicrobial agents 5 from sponge associated marine actinomycetes 6 Nocardiopsisdassonvillei MAD08. Appl MicrobiolBiotechnol, JrnlID 253_ArtID 1878. https://doi.org/10.1007/s00253-009-1878-y.
34. J. Mohan, B. Sirisha, K. Prathyusha, P. Rao (2014). Isolation screening and characterization of Actinomycetes from marine sediments for their to produce antifungal agents. G.J.B.A.H.S., Vol.3(4):131-137. ISSN: 2319 – 5584.
35. D. Thirumurugan, R. Vijayakumar, C. Vadivalagan, P. Karthika, Md Khurshid Alam Khan (2018). Isolation, structure elucidation and antibacterial activity of methyl-4,8- dimethylundecanate from the marine actinobacterium Streptomyces albogriseolus ECR64. Microbial Pathogenesis 121, 166–172. https://doi.org/10.1016/j.micpath.2018.05.025.
36. Moaz M. Hamed, Lamis Sh. Abdelfattah and Nayer M. Fahmy (2019). Antimicrobial Activity of Marine Actinomycetes and the Optimization of Culture Conditions for the Production of Antimicrobial Agent(s), J Pure Appl Microbiol., 13(4):2177-2188. https://doi.org/10.22207/JPAM.13.4.30.
37. H. Mondal and J. Thomas (2022). Isolation and Characterization of a Novel Actinomycete Isolated from Marine Sediments and Its Antibacterial Activity against Fish Pathogens. Antibiotics 11, 1546. https://doi.org/10.3390/antibiotics11111546.
38. P. R. Shetty, S. Buddana, V. B. Tatipamula, Y. Varanasi Venkata Naga, J.Ahmad (2014). Production of polypeptide antibiotic from Streptomyces parvulus and its antibacterial activity. Brazilian J. Micro.45,1,303-312.https://doi.org/10.1590/S1517-83822014005000022.
39. K. Engelhardt, K. F. Degnes, M. Kemmler, H. Bredholt, E. Fjaervik, G. Klinkenberg, H. Sletta, T. E. Ellingsen, S. B. Zotchev (2010). Production of a New Thiopeptide Antibiotic, TP-1161, by a Marine NocardiopsisSpecies. Applied and environmental microbiology, p. 4969-4976. https://doi.org/10.1128/AEM.00741-10.
40. M. Ranjith Kumar, V. Brindha Priyadarisini, S. Srigopalram, T. Senthil Kumar, Ill Sup Nou (2014). Studies on a marine Streptomyces fradiae BW2-7 producing glycopeptide antibiotic Vancomycin effective against skin pathogens. Sch. Acad. J. Biosci., 2(11): 746-761. https://www.researchgate.net/publication/270279457.
41. Z. Guo-Zhen, Li. Jie, Z. Wen-Yong, W. Da-Qiao, Z. Jin-Li, X. Li-Hua, Li. Wen-Jun (2012). Pseudonocardiaxishanensis sp. nov., an endophytic actinomycete isolated from the roots of Artemisia annua L. International Journal of Systematic and Evolutionary Microbiology, 62, 2395–2399. https://doi.org/10.1099/ijs.0.037028-0.
42. Li Miao, J. Xu, Z. Yao, Y. Jiang, Huiru Zhou, W. Jiang, K. Dong (2018). The anti-quorum sensing activity and bioactive substance of a marine derived Streptomyces. Biotechnology & biotechnological equipment, vol. 31, no. 5, 1007–1015. https://doi.org/10.1080/13102818.2017.1348253.
43. Li Miao, Sh. Qiana, Sh. Qib, W. Jianga, K. Donga (2021). Culture Medium Optimization and Active Compounds Investigation of an Anti-Quorum Sensing Marine Actinobacterium Nocardiopsisdassonvillei JS106. ISSN 0026-2617, Microbiology, Vol. 90, No. 1, pp. 112-123. https://doi.org/10.1134/S0026261721010070.
44. G. Raissa, D. E. Waturangi, D. Wahjuningrum (2020). Screening of anti-biofilm and anti-quorum sensing activity of Actinomycetes isolates extracts against aquaculture pathogenic bacteria. BMC Microbiology, 20:343. https://doi.org/10.1186/s12866-020-02022-z.
45. E. Mulya and D. E. Waturangi (2021). Screening and quantification of anti-quorum sensing and antibiofilm activity of Actinomycetes isolates against food spoilage biofilm-forming bacteria. BMC Microbiology 21:1. https://doi.org/10.1186/s12866-020-02060-7.
46. J. Chen, B. Wang, Y. Lu, Y. Guo, J. Sun, B. Wei, H. Zhang and H. Wang (2019). Quorum Sensing Inhibitors from Marine Microorganisms and Their Synthetic Derivatives. Mar. Drugs, 17, 80; https://doi.org/10.3390/md17020080.
47. HB. Sarveswari and AP. Solomon (2019). Profile of the Intervention Potential of the Phylum Actinobacteria Toward Quorum Sensing and Other Microbial Virulence Strategies. Front. Microbiol. 10:2073. https://doi.org/10.3389/fmicb.2019.02073.
48. J.E. Hiagbonare, Y.O. Ogunrinde (2010). Physicochemical analysis of fish pond water in Okada and its environs, Nigeria. African Journal of Biotechnology, 9(36).5922-5928.https://doi.org/10.5897/AJB09.995.
49. M. Huct (1986). Text book of Fish Culture 2nd Edn, Fish News Book Ltd, England. vide Study on the physicochemical properties of Water of Mouri River, Khulna Bangladesh, Pak. J. Biol. Sci. 10(5): 710-717.ISBN10: 0852381409 / ISBN 13: 9780852381403.
50. ICAR. Annual Report, Salient Achievements of Fish Production and Processing 1-8 (2006 -2007). https://icar.org.in/content/dareicar-annual-report-2006-2007.
51. R. A. Brenden, H.W. Huizinga (1986). Pathophysiology of experimental Aeromonas hydrophila infection in goldfish, Carassius auratus (L). Journal of Fish Diseases. 9, 163-167. https://doi.org/10.1111/j.1365-2761.1986.tb00999.x.
52. A. Pachanawan, P. Phumkhachorn, P. Rattanachaikunsopon (2008) Potential of Psidiumguajava supplemented fish diets in controlling Aeromonas hydrophila infection in Tilapia (Oreochromis niloticus), J. BiosciBioeng 106 (5),419-24. https://doi.org/10.1263/jbb.106.419.
53. K. B. Ayaz- Ahmed, T. Raman, and V. Anbazhagan (2016). Platinum nanoparticles inhibit bacteria 150 S. proliferation and rescue zebrafish from bacterial infection, RSC Adv. 6, 44415-44426. https://doi.org/10.1039/C6RA03732A.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.