The Ability of Microorganisms to Produce Antibiotics- A Review
Abstract
Antibiotics are chemicals that prevent or eliminate bacterial growth and are widely used in various applications. They were first discovered by Alexander Fleming in 1928 when he noticed that a mold called Penicillium notatum inhibited the growth of Staphylococcus aureus bacteria. Since then, antibiotics have been extensively studied and utilized to combat bacterial infections.There are several potential sources of antibiotic-producing microorganisms, including soil, water, plants, animals, and even fermented foods. Actinomycetes, a type of bacteria commonly found in soil, are known for their ability to produce a wide range of antibiotics. Marine environments are also considered a rich source of antibiotic-producing microorganisms.The production of antibiotics by bacteria is of great interest, as it offers the potential for the development of new natural product-based drugs. Actinomycetes, particularly Streptomyces species, have been a major focus of antibiotic research and have yielded thousands of distinct secondary metabolites, many of which are antibiotics.Antibiotics play various natural functions in microbial interactions in different environments. They can act as weapons or shields, protecting bacteria from predators or competing microbes. Antibiotics can also have concentration-dependent effects, acting as inhibitors at high concentrations and mediators of intracellular signaling at low concentrations.The production of antibiotics by bacteria in soil and plant-associated environments has been extensively studied. Bacterial genera such as Bacillus, Pseudomonas, and Streptomyces have been found to produce bioactive peptides with antimicrobial properties. These antibiotics can help bacteria survive in harsh environments by inhibiting the growth of predators or competitors.
Downloads
References
2. Waites, M. J., Morgan, N. L., Rockey, J. S., & Higton, G. (2008). Industrial Microbiology an Introduction London.
3. Talbot, G. H., Bradley, J., Edwards Jr, J. E., Gilbert, D., Scheld, M., & Bartlett, J. G. (2006). Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clinical infectious diseases, 42(5), 657-668.
4. Oskay, A. M., Üsame, T., &Cem, A. (2004). Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. African journal of Biotechnology, 3(9), 441-446.
5. Sudha, S. K. S., &Hemalatha, R. (2015). Isolation and screening of antibiotic producing actinomycetes from garden soil of Sathyabama University, Chennai. Asian J Pharm Clin Res, 8(6), 10-4.
6. Bredholt, H., Fjærvik, E., Johnsen, G., &Zotchev, S. B. (2008). Actinomycetes from sediments in the Trondheim fjord, Norway: diversity and biological activity. Marine drugs, 6(1), 12-24.
7. Baltz, R. H. (2006). Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration?. Journal of Industrial Microbiology and Biotechnology, 33(7), 507-513.
8. Solingen, P., Meijer, D., Kleij, W. A., Barnett, C., Bolle, R., Power, S. D., & Jones, B. E. (2001). Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles, 5(5), 333-341.
9. Solingen, P., Meijer, D., Kleij, W. A., Barnett, C., Bolle, R., Power, S. D., & Jones, B. E. (2001). Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles, 5(5), 333-341.
10. Kumar, K. S., Sahu, M. K., &Kathiresan, K. (2005). Isolation and characterisation of Streptomycetes, producing antibiotic, from a mangrove environment. Asian Journal of Microbiology Biotechnology and Environmental Sciences, 7(3), 457.
11. Phandanouvong-Lozano, V. (2019). Investigating the Impact of Xenobiotics on Bacterial Communities Using Next Generation Sequencing Strategies. Cornell University.
12. Baltz, R. H. (2008). Renaissance in antibacterial discovery from actinomycetes. Current opinion in pharmacology, 8(5), 557-563.
13. Berdy, J. (2005). Bioactive microbial metabolites. The Journal of antibiotics, 58(1), 1-26.
14. Chater, K. F., Biró, S., Lee, K. J., Palmer, T., & Schrempf, H. (2010). The complex extracellular biology of Streptomyces. FEMS microbiology reviews, 34(2), 171-198.
15. Genilloud, O., González, I., Salazar, O., Martín, J., Tormo, J. R., & Vicente, F. (2011). Current approaches to exploit actinomycetes as a source of novel natural products. Journal of Industrial Microbiology and Biotechnology, 38(3), 375-389.
16. Reichenbach, H., &Höfle, G. (2000). Myxobacteria as producers of secondary metabolites. Drug discovery from nature, 149-179.
17. Monier, J. M., Demanèche, S., Delmont, T. O., Mathieu, A., Vogel, T. M., &Simonet, P. (2011). Metagenomic exploration of antibiotic resistance in soil. Current opinion in microbiology, 14(3), 229-235.
18. Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., &Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8(4), 251-259.
19. Davies, J., Spiegelman, G. B., & Yim, G. (2006). The world of subinhibitory antibiotic concentrations. Current opinion in microbiology, 9(5), 445-453.
20. Kell, D. B., Kaprelyants, A. S., &Grafen, A. (1995). Pheromones, social behaviour and the functions of secondary metabolism in bacteria. Trends in ecology & evolution, 10(3), 126-129.
21. López, D., Vlamakis, H., Losick, R., & Kolter, R. (2009). Cannibalism enhances biofilm development in Bacillus subtilis. Molecular microbiology, 74(3), 609-618.
22. Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., &Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8(4), 251-259.
23. Pirri, G., Giuliani, A., Nicoletto, S., Pizzuto, L., & Rinaldi, A. (2009). Lipopeptides as anti-infectives: a practical perspective. Open Life Sciences, 4(3), 258-273.
24. Leveau, J. H., &Lindow, S. E. (2002). Bioreporters in microbial ecology. Current opinion in microbiology, 5(3), 259-265.
25. Rochat, L., Péchy-Tarr, M., Baehler, E., Maurhofer, M., & Keel, C. (2010). Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry. Molecular plant-microbe interactions, 23(7), 949-961.
26. O’Brien, J., & Wright, G. D. (2011). An ecological perspective of microbial secondary metabolism. Current Opinion in Biotechnology, 22(4), 552-558.
27. Weissman, K. J., & Müller, R. (2009). A brief tour of myxobacterial secondary metabolism. Bioorganic & medicinal chemistry, 17(6), 2121-2136.
28. Andersen, S. R., &Sandaa, R. A. (1994). Distribution of tetracycline resistance determinants among gram-negative bacteria isolated from polluted and unpolluted marine sediments. Applied and Environmental Microbiology, 60(3), 908-912.
29. Pang, Y., Brown, B. A., Steingrube, V. A., Wallace Jr, R. J., & Roberts, M. C. (1994). Tetracycline resistance determinants in Mycobacterium and Streptomyces species. Antimicrobial Agents and Chemotherapy, 38(6), 1408-1412.
30. Cooper, A. J., Shoemaker, N. B., & Salyers, A. A. (1996). The erythromycin resistance gene from the Bacteroides conjugal transposon TcrEmr 7853 is nearly identical to ermG from Bacillus sphaericus. Antimicrobial agents and chemotherapy, 40(2), 506-508.
31. Top, E., De Smet, I., Verstraete, W., Dijkmans, R., &Mergeay, M. (1994). Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Applied and Environmental Microbiology, 60(3), 831-839.
32. Weisblum, B. (1995). Erythromycin resistance by ribosome modification. Antimicrobial agents and chemotherapy, 39(3), 577-585.
33. Hannover, D., &Woese, C. (1998). The Universal Ancestor. Proc. Natl. Acad. Sci. USA, 95, 6854-6859.
34. Götz, A., Pukall, R., Smit, E., Tietze, E., Prager, R., Tschäpe, H., ... &Smalla, K. (1996). Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Applied and environmental microbiology, 62(7), 2621-2628.
35. Nwosu, V. C., &Ladapo, J. A. (1999). Antibiotic response and plasmid profile of bacteria isolated from a landfill. Current microbiology, 39(5), 249-253.
36. Ladapo, J. A., & Nwosu, V. (1999). Growth response of landfill bacteria to different concentrations of heavy metals. Journal of Environmental Biology, 20(1), 1-5.
37. Griffiths, B. S., Bonkowski, M., Dobson, G., & Caul, S. (1999). Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia, 43(4), 297-304.
38. De Mesel, I., Derycke, S., Moens, T., Van der Gucht, K., Vincx, M., & Swings, J. (2004). Top‐down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environmental Microbiology, 6(7), 733-744.
39. Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in microbiology, 16(3), 115-125.
40. Cohen, M. F., & Mazzola, M. (2006). Effects of Brassica napus seed meal amendment on soil populations of resident bacteria and Naegleria americana, and the unsuitability of arachidonic acid as a protozoan-specific marker. The Journal of Protozoology Research, 16(1-2), 16-25.
41. Weekers, P. H., Bodelier, P. L., Wijen, J. P., &Vogels, G. D. (1993). Effects of grazing by the free-living soil amoebae Acanthamoeba castellanii, Acanthamoeba polyphaga, and Hartmannellavermiformis on various bacteria. Applied and Environmental Microbiology, 59(7), 2317-2319.
42. Jousset, A., Lara, E., Wall, L. G., & Valverde, C. (2006). Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Applied and Environmental Microbiology, 72(11), 7083-7090.
43. Matz, C., Deines, P., Boenigk, J., Arndt, H., Eberl, L., Kjelleberg, S., &Jürgens, K. (2004). Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Applied and Environmental Microbiology, 70(3), 1593-1599.
44. Mazzola, M., De Bruijn, I., Cohen, M. F., &Raaijmakers, J. M. (2009). Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Applied and Environmental Microbiology, 75(21), 6804-6811.
45. Jousset, A., Lara, E., Wall, L. G., & Valverde, C. (2006). Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Applied and Environmental Microbiology, 72(11), 7083-7090.
46. Jousset, A., Scheu, S., &Bonkowski, M. (2008). Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Functional Ecology, 22(4), 714-719.
47. Neidig, N., Paul, R. J., Scheu, S., &Jousset, A. (2011). Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex non-trophic interactions with bacterivorous nematodes. Microbial ecology, 61(4), 853-859.
48. Healy, F. G., Krasnoff, S. B., Wach, M., Gibson, D. M., & Loria, R. (2002). Involvement of a cytochrome P450 monooxygenase in thaxtomin A biosynthesis by Streptomyces acidiscabies. Journal of bacteriology, 184(7), 2019-2029.
49. Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in microbiology, 16(3), 115-125.
50. Raaijmakers, J. M., De Bruijn, I., & De Kock, M. J. (2006). Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Molecular Plant-Microbe Interactions, 19(7), 699-710.
51. Raaijmakers, J. M., De Bruijn, I., Nybroe, O., &Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS microbiology reviews, 34(6), 1037-1062.
52. De Souza, J. T., De Boer, M., De Waard, P., Van Beek, T. A., &Raaijmakers, J. M. (2003). Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Applied and environmental microbiology, 69(12), 7161-7172.
53. Dantas, G., Sommer, M. O., Oluwasegun, R. D., & Church, G. M. (2008). Bacteria subsisting on antibiotics. Science, 320(5872), 100-103.
54. Steenhoudt, O., &Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS microbiology reviews, 24(4), 487-506.
55. Andrews, M., James, E. K., Cummings, S. P., Zavalin, A. A., Vinogradova, L. V., & McKenzie, B. A. (2003). Use of nitrogen fixing bacteria inoculants as a substitute for nitrogen fertiliser for dryland graminaceous crops: progress made, mechanisms of action and future potential. Symbiosis, 35(1), 209-229.
56. Combes-Meynet, E., Pothier, J. F., Moënne-Loccoz, Y., &Prigent-Combaret, C. (2011). The Pseudomonas secondary metabolite 2, 4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Molecular plant-microbe interactions, 24(2), 271-284.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.