ANALYSIS OF HEAVY METAL, AFLATOxin, PESTICIDE RESIDUE AND MICROBIAL CONTAMINATION OF SIDDHA HERBAL FORMULATION MUPPIRANDAI CHOORANAM

Shanthini R¹*, Anbu N²
¹ PG Scholar, Department of PG Pothu Maruthuvam, Government Siddha Medical College, Chennai, India.
² Professor and Head of the Department, Department Of PG Pothu Maruthuvam, Government Siddha Medical College, Chennai, India.

Article History

Received on: 28-06-2023
Revised on: 14-07-2023
Accepted on: 09-09-2023

Abstract

Aim: The aim of the study was to evaluate the presence of Heavy metal, Aflatoxin, Pesticide residue and Microbial contamination of Siddha herbal formulation Muppirandai Chooranam (MRC).

Place of study: Heavy metal analysis, Aflatoxin assay, Pesticide residue, Microbial contamination analysis were conducted at Noble Research Solutions, Kolathur, Chennai -99.

Methodology: The Siddha formulation Muppirandai Chooranam was prepared as per Good Manufacturing Practices (GMP) guidelines and the Heavy metal analysis, Aflatoxin assay, Pesticide residue, Microbial contamination analysis were conducted at Noble Research Solutions, Kolathur, Chennai -99.

Results: The results of Heavy metal analysis of Muppirandai Chooranam (MRC) shown the presence of Lead at 3.54 PPM and Arsenic, Cadmium, Mercury at Below Detection Limit (BDL). Aflatoxin assay of MRC shown the absence of Aflatoxin B1, Aflatoxin B2, Aflatoxin G1, Aflatoxin G2. Pesticide residue analysis showed that there were no traces of Pesticide residues such as Organochlorine, Organophosphorus, Organocarbamates and Pyrethroids. In Microbial contamination analysis, Test for Specific Pathogen shown the absence of Organisms *E-colli*, *Salmonella*, *Staphylococcus Aureus*, *Pseudomonas Aeruginosa* and No Bacterial and fungal growth or colonies were observed in the Sterility test of MRC as per the methods of AYUSH specifications.

Conclusion: From the results, it is concluded that the study medicine MRC has Heavy metal content below the permissible limit as per PLIM guidelines of AYUSH, and the sample were free from Aflatoxins, Pesticides, Microbes and Specific Pathogens which ensures that the study medicine Muppirandai Chooranam was safe therapeutically.

Keywords: Muppirandai Chooranam, Siddha, Perumbadu, Menorrhagia, Heavy metal

This article is licensed under a Creative Commons Attribution-Non-commercial 4.0 International License. Copyright © 2023 Author(s) retains the copyright of this article.

*Corresponding Author
Dr. Shanthini R
PG Scholar, Dept. Of PG Pothu Maruthuvam
Govt. Siddha Medical College
Arumbakkam, Chennai - 106, India

DOI: https://doi.org/10.37022/wjcmprv5i5.286

1. Introduction

A drug is a substance used as a medicines, which are used either directly as crude drug or after undergone some processes. Siddha system of Medicine uses drugs of plant or animal or metal or mineral origin. To deprive of its impurities, crude raw drugs of either origin should undergone respective standard purification processes and after the actual medicine preparation should be done. This gives better results therapeutically and also helps in detoxification and assures safety. Since Siddha system has multiple combinations of medicines and various preparatory processes like powdering, heating, boiling, drying, grinding, calcinations, sublimation, filtration and so on, chances for impurities, mishandling, is possible which could affect the global acceptance scientifically. This can be rectified by employing proper procedures and can be analysed by standardization techniques through various parameters to get the reproducible standards [1].

Heavy metal test are performed to look for potentially dangerous levels of metals at certain concentrations and some of them includes, Lead, Arsenic, Cadmium, Mercury and Chromium, which are extremely toxic. Pesticide residues which could present in medicines due to usage of pesticides in cultivation process and for economic return [2]. Pesticides and heavy metals can accumulate in the body through biological chains while being persistent and not biodegradable. Thus it is important to monitor their concentration [3].
Aflatoxins are a class of hazardous mycotoxin compounds produced by Aspergillus flavus and Aspergillus parasiticus that have structural similarities. The aflatoxin group contains about 16 compounds out of which only aflatoxin B1, B2, G1 and G2 are regularly monitored. High moisture content and temperature leads to occurrence of mycotoxins and have adverse health effects on humans [4]. According to research, approximately 80% of people in developing countries use traditional herbal remedies as their primary form of healthcare. Contamination by microorganisms of various types that may be adherent to the leaves, stems, blossoms, seeds, and roots from which herbal medicines are manufactured. Microorganisms can also be added throughout the processes of harvesting, handling, open-air drying, preserving, and manufacturing. Due to consumers uncompromising conditions and microbial infections, the presence of microbial contaminants in herbal products might negatively impact their health status, posing a global health issue. Therefore, it is essential to ensure that users of herbal products are safe [5]. Thus, the present study deals with the analysis of Heavy metal, Aflatoxin, Pesticide Residue and Microbial Contamination of Siddha Herbal Formulation Muppirandai Chooranam, indicated for various ailments including Menorrhagia.

2. Materials and Methods

2.1 Collection of Raw Drugs

The Plant Muppirandai was collected and the indigenous herbal raw drugs were procured from a reputed raw drug store, identified and authenticated by the Botanist of Government Siddha Medical College, Chennai, (Voucher number GSMC/MB-603 – 607).

2.2 Ingredients

1. Cissus quadrangularis - three sided (Muppirandai) - 1 thoooki (1.75 kg)
2. Zingiber officinale Rosc. (Dried ginger) - 1 palam (35gm)
3. Piper nigrum Linn. (Pepper) - 1 palam (35gm)
4. Piper longum Linn. (Long pepper) - 1 palam (35gm)
5. Trachyspermum ammi Linn. (Ajwain / thymol seeds) - 1 palam (35gm)

2.3 Purification

Raw drugs were purified as mentioned in Sikkitcha Rathna Deepam Ennum Vaidhiya Nool[6]. Marundhu Sei Iyalam Kalaivyum[7].

Muppirandai

Muppirandai was cleaned by removing its kana, outer skin and soaked in buttermilk, added with salt for 3 days and dried in sunlight.

Chukku

One part of dried ginger was bleached with 2 parts of lime stone (kal sunnambu) for 3 hours (1 saamam), washed, dried and the outer skin was peeled.

Milagu

Soaked in sour buttermilk for 3 hours (1 saamam) and sun dried.

Thippili

Soaked in lime juice and dried.

Omanam

Omanam was washed with lime stone water and dried.

2.4 Sample Preparation

1 thoooki (1.75 kg) of Muppirandai, were taken in a mud vessel, boiled with cow’s milk, filtered, squeezed and juice was taken. Dried ginger, Pepper, Long pepper, Ajwain(each 35gms) were roasted, powdered and mixed with the above juice. The juice mixed with the powders, were kept sun dried. After drying, contents were finely powdered.

3. Materials and Methods

The Heavy metal analysis, Aflatoxin assay, Pesticide residue, Microbial contamination analysis were conducted at Noble Research Solutions, Kolathur, Chennai -99. The project Id was NRS/AS/0898/09/2022

3.1 Heavy Metal Analysis By Atomic Absorption Spectrometry(AAS)

3.1.1 Methodology

Atomic Absorption Spectrometry (AAS) is a very common and reliable technique for detecting metals and metalloids in environmental samples. The total heavy metal content of the sample was performed by Atomic Absorption Spectrometry (AAS) Model AA 240 Series, extraction solvent HCl and HNO3 in order to determine the heavy metals such as mercury, arsenic, lead and cadmium concentrations in the test item. Standard: Hg, As, Pb and Cd – Sigma.

3.1.2 Sample Digestion

Test sample was digested with 1mol/L HCl for determination of arsenic and mercury. Similarly, for the determination of lead and cadmium the sample were digested with 1mol/L of HNO3.

3.1.3 Standard preparation

As & Hg- 100 ppm sample in 1mol/L HCl
Cd & Pb- 100 ppm sample in 1mol/L HNO3

3.2 Aflatoxin Assay by Thin Layer Chromatography (TLC)

Standard: Aflatoxin B1, Aflatoxin B2, Aflatoxin G1, Aflatoxin G2

Solvent: Standard samples was dissolved in a mixture of chloroform and acetoniitrile (9.8:0.2) to obtain a solution having concentrations of 0.5 µg per ml each of aflatoxin B1 and aflatoxin G1 and 0.1 µg per ml each of aflatoxin B2 and aflatoxin G2.

3.2.1 Procedure

Standard aflatoxin was applied on to the surface to pre coated TLC plate in the volume of 2.5 µL, 5µL, 7.5 µL and 10 µL. Similarly, the test sample was placed and Allow the spots to dry and develop the chromatogram in an unsaturated chamber containing a solvent system consisting of a mixture of chloroform, acetone and isopropyl alcohol (85:10:5) until the solvent front has moved not less than 15 cm from the origin. Remove the plate from the developing chamber, mark the solvent from and allow the plate to air-dry. Locate the spots on the plate by examination under UV light at 365 nm [8].

3.3 Pesticide Residue Analysis

Parameter analysed was Organochlorine pesticides, Organophosphorus pesticides, Organic carbanmates, Pyrethroids.

3.3.1 Extraction

Test sample were extracted with acetone and followed by homogenization for brief period. Further
filtration was allowed and subsequent addition of acetone to the test mixture. Heating of test sample was performed using a rotary evaporator at a temperature not exceeding 40ºC until the solvent has almost completely evaporated. To the residue add a few milliliters of toluene and heat again until the acetone is completely removed. Resultant residue will be dissolved using toluene and filtered through membrane filter [9][10].

3.4 Test for Specific Pathogen

3.4.1 Methodology
Test sample was directly inoculated in to the specific pathogen medium (EMB, DCC, Mannitol, Cetrimide) by pour plate method. The plates were incubated at 37ºC for 24 - 72h for observation. Presence of specific pathogen identified by their characteristic colour with respect to pattern of colony formation in each differential media.

Table 1. Detail of Specific Medium and their abbreviation

<table>
<thead>
<tr>
<th>Organism</th>
<th>Abbreviation</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-coli</td>
<td>EC</td>
<td>EMB Agar</td>
</tr>
<tr>
<td>Salmonella</td>
<td>SA</td>
<td>Deoxycholate agar</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>ST</td>
<td>Mannitol salt agar</td>
</tr>
<tr>
<td>Aureus</td>
<td></td>
<td>Cetrimide Agar</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>PS</td>
<td>Cetrimide Agar</td>
</tr>
</tbody>
</table>

3.4 Sterility Test By Pour Plate Method

3.4.1 Objective
The pour plate techniques were adopted to determine the sterility of the product. Contaminated / un sterile sample (formulation) when come in contact with the nutrition rich medium it promotes the growth of the organism and after stipulated period of incubation the growth of the organism was identified by characteristic pattern of colonies. The colonies are referred to as Colony Forming Units (CFUs).

3.4.2 Methodology
Test sample was inoculated in sterile petri dish to which about 15 mL of molten agar 45 ºC were added. Agar and sample were mixed thoroughly by tilting and swirling the dish. Agar was allowed to completely gel without disturbing it. (about 10 minutes). Plates were then inverted and incubated at 37ºC for 24-48 hours and further extended for 72 hrs for fungal growth observation. Grown colonies of organism was then counted and calculated for CFU.

4. Results and Discussion
Heavy metal screening of MRC shown that it contains Arsenic, Cadmium, Mercury were BDL (Below Detection Limit), and Lead was 3.54 PPM, whose maximum limit was up to 10PPM. However, its lower limit indicating the safety of the drug.

Table 2. Test report of Heavy metal analysis of MRC

<table>
<thead>
<tr>
<th>Name of the Heavy Metal</th>
<th>Absorption Max</th>
<th>Result Analysis</th>
<th>Maximum Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>217.0 nm</td>
<td>3.54PPM</td>
<td>10 ppm</td>
</tr>
<tr>
<td>Arsenic</td>
<td>19.37 nm</td>
<td>BDL</td>
<td>3 ppm</td>
</tr>
<tr>
<td>Cadmium</td>
<td>228.8 nm</td>
<td>BDL</td>
<td>0.3 ppm</td>
</tr>
<tr>
<td>Mercury</td>
<td>25.37 nm</td>
<td>BDL</td>
<td>1 ppm</td>
</tr>
</tbody>
</table>

The results of Aflatoxin assay of MRC by TLC shown that there were no spots being identified in the test sample loaded on TLC plates when compare to the standard which indicates that the sample were free from Aflatoxin B1, Aflatoxin B2, Aflatoxin G1, Aflatoxin G2.

Table 3. Test report of Aflatoxin assay of MRC

<table>
<thead>
<tr>
<th>Aflatoxin</th>
<th>Sample MRC</th>
<th>AYUSH Specification Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Not Detected - Absent</td>
<td>0.5 ppm</td>
</tr>
<tr>
<td>B2</td>
<td>Not Detected - Absent</td>
<td>0.1 ppm</td>
</tr>
<tr>
<td>G1</td>
<td>Not Detected - Absent</td>
<td>0.5 ppm</td>
</tr>
<tr>
<td>G2</td>
<td>Not Detected - Absent</td>
<td>0.1 ppm</td>
</tr>
</tbody>
</table>

Pesticide residue analysis of MRC with the parameters Organochlorine pesticides, Organophosphorus pesticides, Oragno carbamates, Pyrethroids were found to be that there were no traces of pesticides residues and the results were given below.

Table 4. Test report of Pesticide residue of MRC

<table>
<thead>
<tr>
<th>Pesticide Residue</th>
<th>Sample MRC</th>
<th>AYUSH Limit (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.Organo Chlorine Pesticides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha BHC</td>
<td>BQL</td>
<td>0.1mg/kg</td>
</tr>
<tr>
<td>Beta BHC</td>
<td>BQL</td>
<td>0.1mg/kg</td>
</tr>
<tr>
<td>Gamma BHC</td>
<td>BQL</td>
<td>0.1mg/kg</td>
</tr>
<tr>
<td>Delta BHC</td>
<td>BQL</td>
<td>0.1mg/kg</td>
</tr>
<tr>
<td>DDT</td>
<td>BQL</td>
<td>1mg/kg</td>
</tr>
<tr>
<td>Endosulphan</td>
<td>BQL</td>
<td>3mg/kg</td>
</tr>
<tr>
<td>II.Organo PhosphorusPesticides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malathion</td>
<td>BQL</td>
<td>1mg/kg</td>
</tr>
<tr>
<td>Chlorpyriphos</td>
<td>BQL</td>
<td>0.2 mg/kg</td>
</tr>
<tr>
<td>Dichlorvos</td>
<td>BQL</td>
<td>1mg/kg</td>
</tr>
<tr>
<td>III. Organo carbamates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbofuran</td>
<td>BQL</td>
<td>0.1mg/kg</td>
</tr>
<tr>
<td>III.Pyrethroid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>BQL</td>
<td>1mg/kg</td>
</tr>
</tbody>
</table>

Microbial contamination analysis of MRC by test for specific pathogen shown that there were no growth was observed after incubation period, reveals the absence of specific pathogen. Results were given below.
Table 5. Test for specific pathogen report

<table>
<thead>
<tr>
<th>Organism</th>
<th>Specification</th>
<th>Result</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-coli</td>
<td>Absent</td>
<td>Absent</td>
<td>As per AYUSH specification</td>
</tr>
<tr>
<td>Salmonella</td>
<td>Absent</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus Aureus</td>
<td>Absent</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas Aeruginosa</td>
<td>Absent</td>
<td>Absent</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Culture plate with E-coli (EC) specific medium

Figure 2. Culture plate with Salmonella (SA) specific medium

Figure 3. Culture plate with Staphylococcus Aureus (ST) specific medium

Figure 4. Culture plate with Pseudomonas Aeruginosa (PS) specific medium

Sterility test of MRC also found to be that there were No growth / colonies was observed in any of the plates inoculates with the test sample which ensures that the sample is devoid of microbial contamination in both the tests.

Table 6. Sterility test report of MRC

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
<th>Specification</th>
<th>As per AYUSH/WHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Bacterial Count</td>
<td>Absent</td>
<td>NMT 10³CFU/g</td>
<td>As per AYUSH specification</td>
</tr>
<tr>
<td>Total Fungal Count</td>
<td>Absent</td>
<td>NMT 10³CFU/g</td>
<td></td>
</tr>
</tbody>
</table>
5. Conclusion
Through the present study, it is concluded that the sample Muppirandai Chooranam (MRC) was found to be safe with the presence of heavy metals below the detection limit, Devoid of aflatoxins, pesticide residues, and microbial contamination in specific pathogens, as well as bacterial and fungal counts. This ensures the quality profile of MRC in terms of contamination from biological chains. This preliminary standardisation study would assist in further research and clinical trials with the basic quality sustain.

6. Acknowledgement
This publication is a part of the MD program of Government Siddha Medical College, Arumbakkam, Chennai-106 affiliated with The Tamil Nadu Dr. MGR Medical University, Guindy, Chennai, Tamil Nadu, India.

7. Consent
It is not applicable.

8. Ethical Approval and Inform Consent
It is not applicable.

9. Author Contribution
Dr. Shanthini R, performed the study and prepared the manuscript. Dr. Anbu N, guided the study and approved the manuscript.

10. Competing Interests
Authors have declared that no competing interests exist.

11. References