Phytochemical and In-Vitro Pharmacological Screening of Ocimum Kilimandscharicum Extract

Lahari Sidde 1*, Motte Sushma 1, Bandi Jayanthi 2.

1 Department of Pharmacy Practice, Balaji college of Pharmacy, JNTUA, Anantapur, Andhra Pradesh, 515001.
2 Department of Pharmaceutical Chemistry, Balaji college of Pharmacy, JNTUA, Anantapur, Andhra Pradesh, 515001.

ABSTRACT

Ocimum kilimandscharicum is a short herb, native to India. In traditional medicine, it is used to treat various ailments including colds, coughs, abdominal pains, measles and diarrhea. Medicative plants, the “back bone” of ancient medication which implies over 3.3 billion folks within the less developed countries utilize medicative plants on an everyday basis. Ocimum kilimandscharicum Guerke (Syn. Ocimum camphora Guerke) belongs to family Lamiaceae. It is a native of Kenya and distributed in East Africa, India, Thailand, Uganda and Tanzania. It is extensively grown in the Tropics. In India it is cultivated on a small scale, especially in West Bengal, Assam, Tamil Nadu, Karnataka, Kerala and Dehradun. The present study is aimed to evaluate in vitro anti-inflammatory, assessment was carried out on the basis of parameters such as heat induced protein denaturation, heat induced haemolysis, and Hypotonicity induced haemolysis. The standard drug was Diclofenac sodium. The findings of the present study showed that the 500 μg/ml of Ethanolic extraction of Ocimum kilimandscharicum (EEK) showed more percentage inhibition when compared to standard. On the basis of results, it can be concluded that Ethanolic extraction of Ocimum kilimandscharicum (EEK) showed significant anti-inflammatory activity.

Key words: Anti-inflammatory, Diclofenac sodium, Ethanolic extraction of Ocimum kilimandscharicum, Glycosylation, Hypotonicity.

Article History:
Received On: 28.03.2020
Revised On: 18.06.2020
Accepted On: 22.06.2020

*Corresponding Author
Name: Lahari.Sidde
Email: lahari.sidde@gmail.com
DOI: https://doi.org/10.37022/wjcmpr.vi.143

This article is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License. Copyright © 2020 Author(s) retain the copyright of this article.

INTRODUCTION

Man relied on the healing properties of medicative plants, before the introduction of chemical medicines. Medicative plants, the “back bone” of ancient medication which implies over 3.3 billion folks within the less developed countries utilize medicative plants on an everyday basis [1]. An herb could be a plant or plant structure valued for its medicative, aromatic or savory qualities. Flavorer plants turn out and contain a spread of chemical substances that impact the body. Flavorer preparations known as “phytopharmaceuticals”, “phytomeds” or “phytomedicine”, square measure preparations made up of completely different components of herbs or plants. They are available in several formulations and dose forms together with tablets, capsules, elixirs, powder, tincture, cream and parenteral preparations [2].

Figure 01: vegetative twig of O.Kilimandscharicum

COMMON NAMES [3]

<table>
<thead>
<tr>
<th>Sanskrit</th>
<th>English</th>
<th>French</th>
<th>Portuguese</th>
<th>Russian</th>
<th>Thai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapura Tulasi</td>
<td>African Basil, Camphor Basil, Camphor-Scented Basil, Perennial Basil, Fever plant</td>
<td>Basilic Camphré, Basilic Campfre, Basilic Du Mont Kilimanjaro</td>
<td>Basilício-Canforado, Basilício-Canforado (Brazil)</td>
<td>Bazilik Kamforrnyi</td>
<td>Ka Phrao India (Prachin Buri), Ka Phrao Khaek (Bangkok)</td>
</tr>
</tbody>
</table>

Ocimum kilimandscharicum Guerke (Syn. Ocimum camphora Guerke) (Fig.1) belongs to family Lamiaceae. It is a native of Kenya and distributed in East Africa, India, Thailand, Uganda and Tanzania. It is extensively grown in the Tropics. In India it is cultivated on a small scale especially in West Bengal, Assam, Tamil Nadu, Karnataka, Kerala and Dehradun. Commonly the plant is called as camphor basil, African blue basil and in Ayurveda as Karpura Tulasi [6].

Morphologically it is a perennial aromatic evergreen undershrub with pubescent branchlets having pale green leaves which are glandular, ovate or oblong in shape, base is acute, deeply serrated, pubescent on both surfaces, oppositely arranged and about 3-7 cm in length including petioles which are 4 to 12 mm long, 1 to 2.5 cm wide; indumentum of long

white adpressed hairs or sometimes glabrous above; petiole 4-10 mm [7].

Inflorescence is vertical, flowers are purplish white in simple or much branched racemes [8]; bracts usually deciduous, forming a small coma, ovate, entire, cuspidate; pedicel 3 mm, erect, slightly curved [9].

CHEMICAL CONSTITUENTS
Seed oil of Ocimum kilimandscharicum contains α – pinene (1.23%), camphene (7.32%), β – myrcene (1.58%), ethylamyl carbinol (0.88%), 1 – phellandrene (0.26%), α – terpeneine (0.33%), p – cymene (0.62%), dl – limonene (13.56%), 1,8 – cineole (0.85%), β – ocimene (2.00%), γ – terpeneine (0.88%), trans-sabinene hydrate (0.49%), α – terpinolene (1.33%), linalool (1.70%), cis – sabine hydrate (0.47%), camphor (56.07%), 4 – terpineol (3.50%), myrtanol (1.24%), trans – caryophyllene (0.33%), germacrene-D (0.43%) [10].

The essential oil of aerial parts of Ocimum kilimandscharicum contains α-pinene(1.23%), camphene(7.32%), β-myrcene(1.58%), α-phellandrene (0.26%), α-terpinene(0.33%), p-cymene(0.62%), DL-limonene (13.56%), 1,8-cineole (0.85%), β-ocimene (2.00%)γ-terpineine (0.88%), cis-sabine hydrate (0.47%), α-terpinolene (1.33%), trans-sabine hydrate (0.49%), linalool (1.70%), camphor (56.07%), terpinen-4-ol (3.50%), myrtanol (1.24%), trans-caryophyllene (0.33%), germacrene D (0.43%) as there constituents [10].

Aqueous extract of leaves of Ocimum kilimandscharicum

Aqueous extract of leaves of Ocimum kilimandscharicum contains camphor, 1, 8-cineole, limonene, Trans caryophyllene, camphene, 4-terpeneol, myrtanol, α-terpineol, endo-borneol, linalool [11]. Leaves also contain flavonoids, tannins, saponins, steroids, carbohydrates, proteins and triterpenoids [12]. These chemical constituents are mainly responsible for various biological activities.

TRADITIONAL USES
The plant has traditionally been used in different parts of the world for various ailments. O. kilimandscharicum is employed as an indigenous medicine for a variety of ailments like cough, bronchitis, viral infections, foul ulcers, anorexia and wounds [12]. The leaves of O. kilimandscharicum are acrid, thermogenic, aromatic, insecticidal, antiviral, appetizing and deodorant and are useful in cough, bronchitis, foul ulcers and wounds, opthalmopathy and vitiated conditions of ‘vata’. The plant has reported to have various central nervous system (CNS) activities. The plant has shown neurotoxic, antineuralgic, CNS stimulant, tranquillizer, anti-alzheimerian and sedative effects [13].

MATERIALS AND METHODS

PLANT COLLECTION AND AUTHENTICATION
The plant leaves of Ocimum kilimandscharicum are collected from Sri Venkateswara University, Tirupathi, 517502, A.P., India, in the month of March and authenticated by Dr. K Madhava chetty, Assistant professor Department of Botany, the plant voucher number 2127.

PREPARATION OF POWDERED LEAF FOR EXTRACTION
The collected leaves of Ocimum kilimandscharicum are cleaned and dried under room temperature in order to avoid degradation of chemical constituents. These leaves are then grinded into a coarse powder and used for the study.

PROCEDURE FOR EXTRACTION
70 Gms of leaf powder was taken and extracted with 500 ml of ethanol as solvent by using continuous hot percolation with the help of soxhlet apparatus (Fig 02) at a temperature of 45°C. This extraction process was carried out until the solvent becomes colourless. The crude extract obtained was then shade dried and percentage yield of the extract was calculated. The extract was then used for further in-vitro evaluation studies.

Figure 02: Extraction of Ocimum kilimandscharicum

Ethanolic Extract

PHYTOCHEMICAL SCREENING
Chemical tests were done to identify the presence of chemical constituents such as carbohydrates, flavanoids, tannins, glycosides, saponins, steroids, triterpenoids, and alkaloids(Table no:1)

ESTIMATION OF TOTAL FLAVONOID CONTENT [14].

METHOD
Total flavonoid content of the ethanolic extract of Ocimum kilimandscharicum leaves was determined according to a modified colorimetric method. Briefly, 1.5 ml of plant extract was taken and 75 µl of 5% NaNO₂ solution was added. After 6 min, 150 µl of 10% AlCl₃.6H₂O was added to the mixture, which was kept at room temperature for 6 more minutes, followed by the addition of 0.5 ml of 1M NaOH and the total volume was made up to 2.5 ml with the addition of deionised water. The resulting solution was mixed well and immediately, the absorbance was measured at 510 nm on a UV-VIS spectrophotometer. For the blank, the extracts were replaced with an equal volume of deionised water. A standard calibration curve was prepared with different concentrations of quercetin (in deionised water).

THIN LAYER CHROMATOGRAPHY [15]

TLC is a chromatography technique used to separate non volatile mixtures. Thin layer chromatography (TLC) plate is prepared by application of uniform layer of adsorbent on the glass. Dimensions of the plate: 20cm × 5cm. The application of the adsorbent can be done by pouring the slurry. The slurry is made by dissolving Silica gel G in water (1:2). Now the plate was activated at 100°C -105°C for 30 minutes in an oven. There after the sample (2-5 µl) was applied. The plate was developed by inserting it into the tank where the mobile phase solvent is present. The mobile phase we have chosen is n-butanol: acetic acid: water in the ratio of 4:1:5. After the development of the chromatogram the compounds are identified by spraying 0.1% AlCl₃ solution. Yellow colour spot was appeared which confirms the presence of flavanoids.

Rₚvalue was calculated by using the formula.
HYPOTONICITY-INDUCED HAEMOLYSIS [20]
Different concentration of extract (100-500μg/ml), reference sample, and control were separately mixed with 1ml of phosphate buffer, 2ml of hypo saline (0.36%) and 0.5ml of HRBC suspension. Diclofenac sodium (100μg/ml) was used as a standard drug. All the assay mixtures were incubated at 37°C for 30min and centrifuged at 3000rpm. The supernatant liquid was decanted and the haemoglobin content was estimated by a spectrophotometer at 560nm. The percentage hemolysis was estimated by assuming the haemolysis produced in the control as 100%. Percentage protection = 100- (OD sample/OD control) x 100

RESULTS AND DISCUSSION

<table>
<thead>
<tr>
<th>S. No</th>
<th>Name of the chemical test</th>
<th>Name of the constituent</th>
<th>EEOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ninhydrin test</td>
<td>Amino acids</td>
<td>+ve</td>
</tr>
<tr>
<td>2</td>
<td>Warming test</td>
<td>Proteins</td>
<td>-ve</td>
</tr>
<tr>
<td>3</td>
<td>Dragendorff’s test</td>
<td>Alkaloids</td>
<td>-ve</td>
</tr>
<tr>
<td>4</td>
<td>Molisch’s test</td>
<td>Carbohydrates</td>
<td>+ve</td>
</tr>
<tr>
<td>5</td>
<td>Benedicts test</td>
<td>Reducing sugars</td>
<td>+ve</td>
</tr>
<tr>
<td>6</td>
<td>Born tragers test</td>
<td>Glycosides</td>
<td>+ve</td>
</tr>
<tr>
<td>7</td>
<td>Baljet’s test</td>
<td>Cardiac glycosides</td>
<td>+ve</td>
</tr>
<tr>
<td>8</td>
<td>Ferric chloride test</td>
<td>Phenolic compounds</td>
<td>+ve</td>
</tr>
<tr>
<td>9</td>
<td>Ferric chloride test</td>
<td>Tannins</td>
<td>+ve</td>
</tr>
<tr>
<td>10</td>
<td>Libermann-burchard test</td>
<td>Steroids</td>
<td>+ve</td>
</tr>
<tr>
<td>11</td>
<td>shinoda test</td>
<td>Flavonoids</td>
<td>+ve</td>
</tr>
</tbody>
</table>

(*): Present (-): Absent
LAYER CHROMATOGRAPHY

\[ R_f = \frac{\text{Distance moved by the compound}}{\text{Distance moved by the solvent}} = 8.6 \]

Table 02: Effect of Anti-inflammatory activity of EEOK on heat induced protein denaturation

<table>
<thead>
<tr>
<th>Treatment (s)</th>
<th>Concentration (μg/ml)</th>
<th>Absorbance at 660nm (Mean ± SD)</th>
<th>% inhibition of protein denaturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>0.337±0.000 8</td>
<td>-</td>
</tr>
<tr>
<td>EEOK</td>
<td>100</td>
<td>0.216±0.001</td>
<td>35.9</td>
</tr>
<tr>
<td>EEOK</td>
<td>200</td>
<td>0.202±0.002</td>
<td>40.0</td>
</tr>
<tr>
<td>EEOK</td>
<td>300</td>
<td>0.173±0.001</td>
<td>48.6</td>
</tr>
<tr>
<td>EEOK</td>
<td>400</td>
<td>0.147±0.001</td>
<td>56.3</td>
</tr>
<tr>
<td>EEOK</td>
<td>500</td>
<td>0.113±0.001</td>
<td>66.4</td>
</tr>
<tr>
<td>DICLOFENA CSODIUM</td>
<td>100</td>
<td>0.137±0.001</td>
<td>59.3</td>
</tr>
</tbody>
</table>

Table 03: Effect of Anti-inflammatory activity of EEOK on heat induced haemolysis

<table>
<thead>
<tr>
<th>Treatment (s)</th>
<th>Concentration (μg/ml)</th>
<th>Absorbance at 660nm (Mean ± SD)</th>
<th>% inhibition of Hemolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>0.326±0.001</td>
<td>-</td>
</tr>
<tr>
<td>EEOK</td>
<td>100</td>
<td>0.215±0.002</td>
<td>34.0</td>
</tr>
<tr>
<td>EEOK</td>
<td>200</td>
<td>0.203±0.004</td>
<td>37.7</td>
</tr>
<tr>
<td>EEOK</td>
<td>300</td>
<td>0.154±0.002</td>
<td>52.7</td>
</tr>
<tr>
<td>EEOK</td>
<td>400</td>
<td>0.124±0.003</td>
<td>61.9</td>
</tr>
<tr>
<td>EEOK</td>
<td>500</td>
<td>0.094±0.001</td>
<td>71.1</td>
</tr>
<tr>
<td>DICLOFENA CSODIUM</td>
<td>100</td>
<td>0.147±0.001</td>
<td>54.9</td>
</tr>
</tbody>
</table>

Table 04: Effect of Anti-inflammatory activity of EEOK on Hypotonicity induced haemolysis

<table>
<thead>
<tr>
<th>Extract</th>
<th>Total flavonoid content (QE mg/g of dry material)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEOK</td>
<td>122.86±0.38</td>
</tr>
</tbody>
</table>

DISCUSSION

The calibration curve for 5 sequentially and independently prepared standard solutions of quercetin depicts the concentration of quercetin against the absorbance. The absorbance value increased proportionally upon increasing the concentration of quercetin. A slight deviation from the linearity...
seemingly occurred at the higher concentration region of quercetin calibration plot. Nevertheless, for our estimation purposes, the calibration plot was employed to ascertain the total flavonoid content of the ethanolic extract. Total flavonoid content in the ethanolic extract of Ocimum kilimandscharicum leaves was found to be 122.86 mg/g (Table no:5) equivalent to Quercetin (QE), i.e., 1 g of the extract contains 122.86 mg of Quercetin equivalent.

THIN LAYER CHROMATOGRAPHY
The Rf value in the chromatographic analysis of Ethanolic extract of Ocimum kilimandscharicum was found to be 0.74 which was nearer to the standard Rf value of isoquercetin(0.716).

COLUMN CHROMATOGRAPHY
The sample containing a mixture of : Hexane (100) "Fig.3", hexane : ethyl acetate (80:20) "Fig.4", hexane : ethanol (70:30) "Fig.5", hexane : methanol (50:50) "Fig.6". The hexane: ethyl acetate fraction eluted from the column as thick green colour. The hexane: ethanol fraction has shown brown colour. The hexane: methanol fraction became colorless. The eluted fractions were collected in test tubes and identified by their distinctive colours. As we needed flavanoids, we have taken the eluted fractions of ethanol and sented it for structural identification by mass and NMR. Finally we identified the compound that was present in the extract was isoquercetin.

IR SPECTRA STANDARD VALUES
Table 06: IR spectra standard values

<table>
<thead>
<tr>
<th>S.No</th>
<th>Functional group</th>
<th>Standard value</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>C=O</td>
<td>1652-1750</td>
<td>1648</td>
</tr>
<tr>
<td>2.</td>
<td>OH</td>
<td>600-700</td>
<td>677.7</td>
</tr>
<tr>
<td>3.</td>
<td>C-O-C</td>
<td>1150-1070</td>
<td>1086.91</td>
</tr>
<tr>
<td>4.</td>
<td>ArH</td>
<td>3100-3300</td>
<td>3348</td>
</tr>
</tbody>
</table>

Graph 01: Effect of Anti-inflammatory activity of EEO on heat induced protein denaturation

Effect of Anti-inflammatory activity of EEO on heat induced haemolysis

Graph 02 : Effect of Anti-inflammatory activity

The extract was effective in inhibiting the heat induced haemolysis at different concentrations. The results showed that maximum inhibition of EEO 52.6% "Graph no. 2" inhibition at a concentration of 500 μg/ml protect significantly the erythrocyte membrane against lysis induced by heat (Table 4.3). Diclofenac sodium 100 μg/ml offered a significant inhibition of 36.3% and protect against damaging effect of heat solution.

HYPO TONICITY INDUCED HAEMOLYSIS

Percentage inhibition of Hypotonicity induced haemolysis

Graph 01: Effect of Anti-inflammatory activity of EEO on heat induced protein denaturation

Graph 02 : Effect of Anti-inflammatory activity
Graph 03: Effect of Anti-inflammatory activity of EEOK on hypotonicity induced haemolysis

The results showed that EEOK at concentration range of 300-500μg/ml protect significantly the erythrocyte membrane against lysis induced by hypotonic solution (Table 4.4). Diclofenac sodium (100μg/ml) offered a significant protection against the damaging effect of hypotonic solution. At the concentration of 500μg/ml, EEOK showed maximum of 71.1% protection, whereas Diclofenac sodium (100μg/ml) showed 54.9% “Graph no.3” inhibition of RBC haemolysis when compared with control.

Protein Denaturation is a process in which proteins lose their tertiary structure and secondary structure by application of external stress or compound, such as strong acid or base, a concentrated inorganic salt, an organic solvent or heat. Most biological proteins lose their biological function when denatured. Denaturation of proteins is a well documented cause of inflammation. The increments in absorbance of test samples with respect to control indicated stabilization of protein i.e., inhibition of heat-induced protein (albumin) denaturation by Ocimum kilimandscharicum and reference drug diclofenac sodium. From the percentage inhibition of protein denaturation values it becomes evident that EEOK was more active than diclofenac sodium, being effective in lower concentrations.

CONCLUSION

On the basis of the present study, the results finally concluded that the ethanolic extract of Ocimum kilimandscharicum possess anti-inflammatory, anti-diabetic and diuretic activities. These activities may be due to the strong occurrence of polyphenolic compounds such as flavonoids, tannins, steroids, and phenols. This research gives an idea that the compound of the plant Ocimum kilimandscharicum can be used as lead compounds for designing potent drugs which can be used for treatment of various diseases such as cancer, neurological disorder, aging and other disorders. However these studies are not sufficient to claim and hence various other pharmacological, phytochemical and bio analytical studies followed by observational studies in humans are to be carried out in order to support the traditional importance of the stated activities.

REFERENCES

Research Article

